Step |
Hyp |
Ref |
Expression |
1 |
|
2onn |
|- 2o e. _om |
2 |
|
nnfi |
|- ( 2o e. _om -> 2o e. Fin ) |
3 |
1 2
|
ax-mp |
|- 2o e. Fin |
4 |
|
enfi |
|- ( P ~~ 2o -> ( P e. Fin <-> 2o e. Fin ) ) |
5 |
3 4
|
mpbiri |
|- ( P ~~ 2o -> P e. Fin ) |
6 |
5
|
adantl |
|- ( ( X e. P /\ P ~~ 2o ) -> P e. Fin ) |
7 |
|
simpl |
|- ( ( X e. P /\ P ~~ 2o ) -> X e. P ) |
8 |
|
1onn |
|- 1o e. _om |
9 |
|
simpr |
|- ( ( X e. P /\ P ~~ 2o ) -> P ~~ 2o ) |
10 |
|
df-2o |
|- 2o = suc 1o |
11 |
9 10
|
breqtrdi |
|- ( ( X e. P /\ P ~~ 2o ) -> P ~~ suc 1o ) |
12 |
|
dif1en |
|- ( ( 1o e. _om /\ P ~~ suc 1o /\ X e. P ) -> ( P \ { X } ) ~~ 1o ) |
13 |
8 11 7 12
|
mp3an2i |
|- ( ( X e. P /\ P ~~ 2o ) -> ( P \ { X } ) ~~ 1o ) |
14 |
|
en1uniel |
|- ( ( P \ { X } ) ~~ 1o -> U. ( P \ { X } ) e. ( P \ { X } ) ) |
15 |
13 14
|
syl |
|- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { X } ) e. ( P \ { X } ) ) |
16 |
|
eldifsn |
|- ( U. ( P \ { X } ) e. ( P \ { X } ) <-> ( U. ( P \ { X } ) e. P /\ U. ( P \ { X } ) =/= X ) ) |
17 |
15 16
|
sylib |
|- ( ( X e. P /\ P ~~ 2o ) -> ( U. ( P \ { X } ) e. P /\ U. ( P \ { X } ) =/= X ) ) |
18 |
17
|
simpld |
|- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { X } ) e. P ) |
19 |
7 18
|
prssd |
|- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } C_ P ) |
20 |
17
|
simprd |
|- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { X } ) =/= X ) |
21 |
20
|
necomd |
|- ( ( X e. P /\ P ~~ 2o ) -> X =/= U. ( P \ { X } ) ) |
22 |
|
pr2nelem |
|- ( ( X e. P /\ U. ( P \ { X } ) e. P /\ X =/= U. ( P \ { X } ) ) -> { X , U. ( P \ { X } ) } ~~ 2o ) |
23 |
7 18 21 22
|
syl3anc |
|- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } ~~ 2o ) |
24 |
|
ensym |
|- ( P ~~ 2o -> 2o ~~ P ) |
25 |
24
|
adantl |
|- ( ( X e. P /\ P ~~ 2o ) -> 2o ~~ P ) |
26 |
|
entr |
|- ( ( { X , U. ( P \ { X } ) } ~~ 2o /\ 2o ~~ P ) -> { X , U. ( P \ { X } ) } ~~ P ) |
27 |
23 25 26
|
syl2anc |
|- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } ~~ P ) |
28 |
|
fisseneq |
|- ( ( P e. Fin /\ { X , U. ( P \ { X } ) } C_ P /\ { X , U. ( P \ { X } ) } ~~ P ) -> { X , U. ( P \ { X } ) } = P ) |
29 |
6 19 27 28
|
syl3anc |
|- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } = P ) |
30 |
29
|
eqcomd |
|- ( ( X e. P /\ P ~~ 2o ) -> P = { X , U. ( P \ { X } ) } ) |