| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2onn |
|- 2o e. _om |
| 2 |
|
nnfi |
|- ( 2o e. _om -> 2o e. Fin ) |
| 3 |
1 2
|
ax-mp |
|- 2o e. Fin |
| 4 |
|
enfi |
|- ( P ~~ 2o -> ( P e. Fin <-> 2o e. Fin ) ) |
| 5 |
3 4
|
mpbiri |
|- ( P ~~ 2o -> P e. Fin ) |
| 6 |
5
|
adantl |
|- ( ( X e. P /\ P ~~ 2o ) -> P e. Fin ) |
| 7 |
|
simpl |
|- ( ( X e. P /\ P ~~ 2o ) -> X e. P ) |
| 8 |
|
1onn |
|- 1o e. _om |
| 9 |
|
simpr |
|- ( ( X e. P /\ P ~~ 2o ) -> P ~~ 2o ) |
| 10 |
|
df-2o |
|- 2o = suc 1o |
| 11 |
9 10
|
breqtrdi |
|- ( ( X e. P /\ P ~~ 2o ) -> P ~~ suc 1o ) |
| 12 |
|
dif1ennn |
|- ( ( 1o e. _om /\ P ~~ suc 1o /\ X e. P ) -> ( P \ { X } ) ~~ 1o ) |
| 13 |
8 11 7 12
|
mp3an2i |
|- ( ( X e. P /\ P ~~ 2o ) -> ( P \ { X } ) ~~ 1o ) |
| 14 |
|
en1uniel |
|- ( ( P \ { X } ) ~~ 1o -> U. ( P \ { X } ) e. ( P \ { X } ) ) |
| 15 |
13 14
|
syl |
|- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { X } ) e. ( P \ { X } ) ) |
| 16 |
|
eldifsn |
|- ( U. ( P \ { X } ) e. ( P \ { X } ) <-> ( U. ( P \ { X } ) e. P /\ U. ( P \ { X } ) =/= X ) ) |
| 17 |
15 16
|
sylib |
|- ( ( X e. P /\ P ~~ 2o ) -> ( U. ( P \ { X } ) e. P /\ U. ( P \ { X } ) =/= X ) ) |
| 18 |
17
|
simpld |
|- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { X } ) e. P ) |
| 19 |
7 18
|
prssd |
|- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } C_ P ) |
| 20 |
17
|
simprd |
|- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { X } ) =/= X ) |
| 21 |
20
|
necomd |
|- ( ( X e. P /\ P ~~ 2o ) -> X =/= U. ( P \ { X } ) ) |
| 22 |
|
enpr2 |
|- ( ( X e. P /\ U. ( P \ { X } ) e. P /\ X =/= U. ( P \ { X } ) ) -> { X , U. ( P \ { X } ) } ~~ 2o ) |
| 23 |
7 18 21 22
|
syl3anc |
|- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } ~~ 2o ) |
| 24 |
|
ensym |
|- ( P ~~ 2o -> 2o ~~ P ) |
| 25 |
24
|
adantl |
|- ( ( X e. P /\ P ~~ 2o ) -> 2o ~~ P ) |
| 26 |
|
entr |
|- ( ( { X , U. ( P \ { X } ) } ~~ 2o /\ 2o ~~ P ) -> { X , U. ( P \ { X } ) } ~~ P ) |
| 27 |
23 25 26
|
syl2anc |
|- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } ~~ P ) |
| 28 |
|
fisseneq |
|- ( ( P e. Fin /\ { X , U. ( P \ { X } ) } C_ P /\ { X , U. ( P \ { X } ) } ~~ P ) -> { X , U. ( P \ { X } ) } = P ) |
| 29 |
6 19 27 28
|
syl3anc |
|- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } = P ) |
| 30 |
29
|
eqcomd |
|- ( ( X e. P /\ P ~~ 2o ) -> P = { X , U. ( P \ { X } ) } ) |