Step |
Hyp |
Ref |
Expression |
1 |
|
2onn |
|- 2o e. _om |
2 |
|
nnfi |
|- ( 2o e. _om -> 2o e. Fin ) |
3 |
1 2
|
ax-mp |
|- 2o e. Fin |
4 |
|
simpl1 |
|- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> C ~~ 2o ) |
5 |
|
enfii |
|- ( ( 2o e. Fin /\ C ~~ 2o ) -> C e. Fin ) |
6 |
3 4 5
|
sylancr |
|- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> C e. Fin ) |
7 |
|
simpl2 |
|- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> A e. C ) |
8 |
|
simpl3 |
|- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> B e. C ) |
9 |
7 8
|
prssd |
|- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> { A , B } C_ C ) |
10 |
|
pr2nelem |
|- ( ( A e. C /\ B e. C /\ A =/= B ) -> { A , B } ~~ 2o ) |
11 |
10
|
3expa |
|- ( ( ( A e. C /\ B e. C ) /\ A =/= B ) -> { A , B } ~~ 2o ) |
12 |
11
|
3adantl1 |
|- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> { A , B } ~~ 2o ) |
13 |
4
|
ensymd |
|- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> 2o ~~ C ) |
14 |
|
entr |
|- ( ( { A , B } ~~ 2o /\ 2o ~~ C ) -> { A , B } ~~ C ) |
15 |
12 13 14
|
syl2anc |
|- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> { A , B } ~~ C ) |
16 |
|
fisseneq |
|- ( ( C e. Fin /\ { A , B } C_ C /\ { A , B } ~~ C ) -> { A , B } = C ) |
17 |
6 9 15 16
|
syl3anc |
|- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> { A , B } = C ) |
18 |
17
|
eqcomd |
|- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> C = { A , B } ) |
19 |
18
|
ex |
|- ( ( C ~~ 2o /\ A e. C /\ B e. C ) -> ( A =/= B -> C = { A , B } ) ) |