Step |
Hyp |
Ref |
Expression |
1 |
|
en2prd.1 |
|- ( ph -> A e. V ) |
2 |
|
en2prd.2 |
|- ( ph -> B e. W ) |
3 |
|
en2prd.3 |
|- ( ph -> C e. X ) |
4 |
|
en2prd.4 |
|- ( ph -> D e. Y ) |
5 |
|
en2prd.5 |
|- ( ph -> A =/= B ) |
6 |
|
en2prd.6 |
|- ( ph -> C =/= D ) |
7 |
|
prex |
|- { <. A , C >. , <. B , D >. } e. _V |
8 |
|
f1oprg |
|- ( ( ( A e. V /\ C e. X ) /\ ( B e. W /\ D e. Y ) ) -> ( ( A =/= B /\ C =/= D ) -> { <. A , C >. , <. B , D >. } : { A , B } -1-1-onto-> { C , D } ) ) |
9 |
1 3 2 4 8
|
syl22anc |
|- ( ph -> ( ( A =/= B /\ C =/= D ) -> { <. A , C >. , <. B , D >. } : { A , B } -1-1-onto-> { C , D } ) ) |
10 |
5 6 9
|
mp2and |
|- ( ph -> { <. A , C >. , <. B , D >. } : { A , B } -1-1-onto-> { C , D } ) |
11 |
|
f1oeq1 |
|- ( f = { <. A , C >. , <. B , D >. } -> ( f : { A , B } -1-1-onto-> { C , D } <-> { <. A , C >. , <. B , D >. } : { A , B } -1-1-onto-> { C , D } ) ) |
12 |
11
|
spcegv |
|- ( { <. A , C >. , <. B , D >. } e. _V -> ( { <. A , C >. , <. B , D >. } : { A , B } -1-1-onto-> { C , D } -> E. f f : { A , B } -1-1-onto-> { C , D } ) ) |
13 |
7 10 12
|
mpsyl |
|- ( ph -> E. f f : { A , B } -1-1-onto-> { C , D } ) |
14 |
|
prex |
|- { A , B } e. _V |
15 |
|
prex |
|- { C , D } e. _V |
16 |
|
breng |
|- ( ( { A , B } e. _V /\ { C , D } e. _V ) -> ( { A , B } ~~ { C , D } <-> E. f f : { A , B } -1-1-onto-> { C , D } ) ) |
17 |
14 15 16
|
mp2an |
|- ( { A , B } ~~ { C , D } <-> E. f f : { A , B } -1-1-onto-> { C , D } ) |
18 |
13 17
|
sylibr |
|- ( ph -> { A , B } ~~ { C , D } ) |