| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> J ~~ 2o ) | 
						
							| 2 |  | toponss |  |-  ( ( J e. ( TopOn ` X ) /\ x e. J ) -> x C_ X ) | 
						
							| 3 | 2 | ad2ant2rl |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ ( X = (/) /\ x e. J ) ) -> x C_ X ) | 
						
							| 4 |  | simprl |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ ( X = (/) /\ x e. J ) ) -> X = (/) ) | 
						
							| 5 |  | sseq0 |  |-  ( ( x C_ X /\ X = (/) ) -> x = (/) ) | 
						
							| 6 | 3 4 5 | syl2anc |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ ( X = (/) /\ x e. J ) ) -> x = (/) ) | 
						
							| 7 |  | velsn |  |-  ( x e. { (/) } <-> x = (/) ) | 
						
							| 8 | 6 7 | sylibr |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ ( X = (/) /\ x e. J ) ) -> x e. { (/) } ) | 
						
							| 9 | 8 | expr |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> ( x e. J -> x e. { (/) } ) ) | 
						
							| 10 | 9 | ssrdv |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> J C_ { (/) } ) | 
						
							| 11 |  | topontop |  |-  ( J e. ( TopOn ` X ) -> J e. Top ) | 
						
							| 12 |  | 0opn |  |-  ( J e. Top -> (/) e. J ) | 
						
							| 13 | 11 12 | syl |  |-  ( J e. ( TopOn ` X ) -> (/) e. J ) | 
						
							| 14 | 13 | ad2antrr |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> (/) e. J ) | 
						
							| 15 | 14 | snssd |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> { (/) } C_ J ) | 
						
							| 16 | 10 15 | eqssd |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> J = { (/) } ) | 
						
							| 17 |  | 0ex |  |-  (/) e. _V | 
						
							| 18 | 17 | ensn1 |  |-  { (/) } ~~ 1o | 
						
							| 19 | 16 18 | eqbrtrdi |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> J ~~ 1o ) | 
						
							| 20 | 19 | olcd |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> ( J = (/) \/ J ~~ 1o ) ) | 
						
							| 21 |  | sdom2en01 |  |-  ( J ~< 2o <-> ( J = (/) \/ J ~~ 1o ) ) | 
						
							| 22 | 20 21 | sylibr |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> J ~< 2o ) | 
						
							| 23 |  | sdomnen |  |-  ( J ~< 2o -> -. J ~~ 2o ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> -. J ~~ 2o ) | 
						
							| 25 | 24 | ex |  |-  ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> ( X = (/) -> -. J ~~ 2o ) ) | 
						
							| 26 | 25 | necon2ad |  |-  ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> ( J ~~ 2o -> X =/= (/) ) ) | 
						
							| 27 | 1 26 | mpd |  |-  ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> X =/= (/) ) | 
						
							| 28 | 27 | necomd |  |-  ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> (/) =/= X ) | 
						
							| 29 | 13 | adantr |  |-  ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> (/) e. J ) | 
						
							| 30 |  | toponmax |  |-  ( J e. ( TopOn ` X ) -> X e. J ) | 
						
							| 31 | 30 | adantr |  |-  ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> X e. J ) | 
						
							| 32 |  | en2eqpr |  |-  ( ( J ~~ 2o /\ (/) e. J /\ X e. J ) -> ( (/) =/= X -> J = { (/) , X } ) ) | 
						
							| 33 | 1 29 31 32 | syl3anc |  |-  ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> ( (/) =/= X -> J = { (/) , X } ) ) | 
						
							| 34 | 28 33 | mpd |  |-  ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> J = { (/) , X } ) | 
						
							| 35 | 34 27 | jca |  |-  ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> ( J = { (/) , X } /\ X =/= (/) ) ) | 
						
							| 36 |  | simprl |  |-  ( ( J e. ( TopOn ` X ) /\ ( J = { (/) , X } /\ X =/= (/) ) ) -> J = { (/) , X } ) | 
						
							| 37 |  | simprr |  |-  ( ( J e. ( TopOn ` X ) /\ ( J = { (/) , X } /\ X =/= (/) ) ) -> X =/= (/) ) | 
						
							| 38 | 37 | necomd |  |-  ( ( J e. ( TopOn ` X ) /\ ( J = { (/) , X } /\ X =/= (/) ) ) -> (/) =/= X ) | 
						
							| 39 |  | enpr2 |  |-  ( ( (/) e. _V /\ X e. J /\ (/) =/= X ) -> { (/) , X } ~~ 2o ) | 
						
							| 40 | 17 30 38 39 | mp3an2ani |  |-  ( ( J e. ( TopOn ` X ) /\ ( J = { (/) , X } /\ X =/= (/) ) ) -> { (/) , X } ~~ 2o ) | 
						
							| 41 | 36 40 | eqbrtrd |  |-  ( ( J e. ( TopOn ` X ) /\ ( J = { (/) , X } /\ X =/= (/) ) ) -> J ~~ 2o ) | 
						
							| 42 | 35 41 | impbida |  |-  ( J e. ( TopOn ` X ) -> ( J ~~ 2o <-> ( J = { (/) , X } /\ X =/= (/) ) ) ) |