Metamath Proof Explorer


Theorem en3

Description: A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion en3
|- ( A ~~ 3o -> E. x E. y E. z A = { x , y , z } )

Proof

Step Hyp Ref Expression
1 2onn
 |-  2o e. _om
2 df-3o
 |-  3o = suc 2o
3 en2
 |-  ( ( A \ { x } ) ~~ 2o -> E. y E. z ( A \ { x } ) = { y , z } )
4 tpass
 |-  { x , y , z } = ( { x } u. { y , z } )
5 4 enp1ilem
 |-  ( x e. A -> ( ( A \ { x } ) = { y , z } -> A = { x , y , z } ) )
6 5 2eximdv
 |-  ( x e. A -> ( E. y E. z ( A \ { x } ) = { y , z } -> E. y E. z A = { x , y , z } ) )
7 1 2 3 6 enp1i
 |-  ( A ~~ 3o -> E. x E. y E. z A = { x , y , z } )