Description: A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | en3 | |- ( A ~~ 3o -> E. x E. y E. z A = { x , y , z } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn | |- 2o e. _om |
|
2 | df-3o | |- 3o = suc 2o |
|
3 | en2 | |- ( ( A \ { x } ) ~~ 2o -> E. y E. z ( A \ { x } ) = { y , z } ) |
|
4 | tpass | |- { x , y , z } = ( { x } u. { y , z } ) |
|
5 | 4 | enp1ilem | |- ( x e. A -> ( ( A \ { x } ) = { y , z } -> A = { x , y , z } ) ) |
6 | 5 | 2eximdv | |- ( x e. A -> ( E. y E. z ( A \ { x } ) = { y , z } -> E. y E. z A = { x , y , z } ) ) |
7 | 1 2 3 6 | enp1i | |- ( A ~~ 3o -> E. x E. y E. z A = { x , y , z } ) |