Description: A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3 | |- ( A ~~ 3o -> E. x E. y E. z A = { x , y , z } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2on | |- 2o e. On | |
| 2 | 1 | onordi | |- Ord 2o | 
| 3 | df-3o | |- 3o = suc 2o | |
| 4 | en2 |  |-  ( ( A \ { x } ) ~~ 2o -> E. y E. z ( A \ { x } ) = { y , z } ) | |
| 5 | tpass |  |-  { x , y , z } = ( { x } u. { y , z } ) | |
| 6 | 5 | enp1ilem |  |-  ( x e. A -> ( ( A \ { x } ) = { y , z } -> A = { x , y , z } ) ) | 
| 7 | 6 | 2eximdv |  |-  ( x e. A -> ( E. y E. z ( A \ { x } ) = { y , z } -> E. y E. z A = { x , y , z } ) ) | 
| 8 | 2 3 4 7 | enp1i |  |-  ( A ~~ 3o -> E. x E. y E. z A = { x , y , z } ) |