Step |
Hyp |
Ref |
Expression |
1 |
|
en3d.1 |
|- ( ph -> A e. V ) |
2 |
|
en3d.2 |
|- ( ph -> B e. W ) |
3 |
|
en3d.3 |
|- ( ph -> ( x e. A -> C e. B ) ) |
4 |
|
en3d.4 |
|- ( ph -> ( y e. B -> D e. A ) ) |
5 |
|
en3d.5 |
|- ( ph -> ( ( x e. A /\ y e. B ) -> ( x = D <-> y = C ) ) ) |
6 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
7 |
3
|
imp |
|- ( ( ph /\ x e. A ) -> C e. B ) |
8 |
4
|
imp |
|- ( ( ph /\ y e. B ) -> D e. A ) |
9 |
5
|
imp |
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x = D <-> y = C ) ) |
10 |
6 7 8 9
|
f1o2d |
|- ( ph -> ( x e. A |-> C ) : A -1-1-onto-> B ) |
11 |
|
f1oen2g |
|- ( ( A e. V /\ B e. W /\ ( x e. A |-> C ) : A -1-1-onto-> B ) -> A ~~ B ) |
12 |
1 2 10 11
|
syl3anc |
|- ( ph -> A ~~ B ) |