| Step | Hyp | Ref | Expression | 
						
							| 1 |  | en3lplem1 |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x = A -> ( x i^i { A , B , C } ) =/= (/) ) ) | 
						
							| 2 |  | en3lplem1 |  |-  ( ( B e. C /\ C e. A /\ A e. B ) -> ( x = B -> ( x i^i { B , C , A } ) =/= (/) ) ) | 
						
							| 3 | 2 | 3comr |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x = B -> ( x i^i { B , C , A } ) =/= (/) ) ) | 
						
							| 4 | 3 | a1d |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x = B -> ( x i^i { B , C , A } ) =/= (/) ) ) ) | 
						
							| 5 |  | tprot |  |-  { A , B , C } = { B , C , A } | 
						
							| 6 | 5 | ineq2i |  |-  ( x i^i { A , B , C } ) = ( x i^i { B , C , A } ) | 
						
							| 7 | 6 | neeq1i |  |-  ( ( x i^i { A , B , C } ) =/= (/) <-> ( x i^i { B , C , A } ) =/= (/) ) | 
						
							| 8 | 7 | bicomi |  |-  ( ( x i^i { B , C , A } ) =/= (/) <-> ( x i^i { A , B , C } ) =/= (/) ) | 
						
							| 9 | 4 8 | syl8ib |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x = B -> ( x i^i { A , B , C } ) =/= (/) ) ) ) | 
						
							| 10 |  | jao |  |-  ( ( x = A -> ( x i^i { A , B , C } ) =/= (/) ) -> ( ( x = B -> ( x i^i { A , B , C } ) =/= (/) ) -> ( ( x = A \/ x = B ) -> ( x i^i { A , B , C } ) =/= (/) ) ) ) | 
						
							| 11 | 1 9 10 | sylsyld |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( ( x = A \/ x = B ) -> ( x i^i { A , B , C } ) =/= (/) ) ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( ( A e. B /\ B e. C /\ C e. A ) /\ x e. { A , B , C } ) -> ( ( x = A \/ x = B ) -> ( x i^i { A , B , C } ) =/= (/) ) ) | 
						
							| 13 |  | en3lplem1 |  |-  ( ( C e. A /\ A e. B /\ B e. C ) -> ( x = C -> ( x i^i { C , A , B } ) =/= (/) ) ) | 
						
							| 14 | 13 | 3coml |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x = C -> ( x i^i { C , A , B } ) =/= (/) ) ) | 
						
							| 15 | 14 | a1d |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x = C -> ( x i^i { C , A , B } ) =/= (/) ) ) ) | 
						
							| 16 |  | tprot |  |-  { C , A , B } = { A , B , C } | 
						
							| 17 | 16 | ineq2i |  |-  ( x i^i { C , A , B } ) = ( x i^i { A , B , C } ) | 
						
							| 18 | 17 | neeq1i |  |-  ( ( x i^i { C , A , B } ) =/= (/) <-> ( x i^i { A , B , C } ) =/= (/) ) | 
						
							| 19 | 15 18 | syl8ib |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x = C -> ( x i^i { A , B , C } ) =/= (/) ) ) ) | 
						
							| 20 | 19 | imp |  |-  ( ( ( A e. B /\ B e. C /\ C e. A ) /\ x e. { A , B , C } ) -> ( x = C -> ( x i^i { A , B , C } ) =/= (/) ) ) | 
						
							| 21 |  | idd |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> x e. { A , B , C } ) ) | 
						
							| 22 |  | dftp2 |  |-  { A , B , C } = { x | ( x = A \/ x = B \/ x = C ) } | 
						
							| 23 | 22 | eleq2i |  |-  ( x e. { A , B , C } <-> x e. { x | ( x = A \/ x = B \/ x = C ) } ) | 
						
							| 24 | 21 23 | imbitrdi |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> x e. { x | ( x = A \/ x = B \/ x = C ) } ) ) | 
						
							| 25 |  | abid |  |-  ( x e. { x | ( x = A \/ x = B \/ x = C ) } <-> ( x = A \/ x = B \/ x = C ) ) | 
						
							| 26 | 24 25 | imbitrdi |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x = A \/ x = B \/ x = C ) ) ) | 
						
							| 27 |  | df-3or |  |-  ( ( x = A \/ x = B \/ x = C ) <-> ( ( x = A \/ x = B ) \/ x = C ) ) | 
						
							| 28 | 26 27 | imbitrdi |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( ( x = A \/ x = B ) \/ x = C ) ) ) | 
						
							| 29 | 28 | imp |  |-  ( ( ( A e. B /\ B e. C /\ C e. A ) /\ x e. { A , B , C } ) -> ( ( x = A \/ x = B ) \/ x = C ) ) | 
						
							| 30 | 12 20 29 | mpjaod |  |-  ( ( ( A e. B /\ B e. C /\ C e. A ) /\ x e. { A , B , C } ) -> ( x i^i { A , B , C } ) =/= (/) ) | 
						
							| 31 | 30 | ex |  |-  ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x i^i { A , B , C } ) =/= (/) ) ) |