Metamath Proof Explorer


Theorem en4

Description: A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion en4
|- ( A ~~ 4o -> E. x E. y E. z E. w A = ( { x , y } u. { z , w } ) )

Proof

Step Hyp Ref Expression
1 3onn
 |-  3o e. _om
2 df-4o
 |-  4o = suc 3o
3 en3
 |-  ( ( A \ { x } ) ~~ 3o -> E. y E. z E. w ( A \ { x } ) = { y , z , w } )
4 qdassr
 |-  ( { x , y } u. { z , w } ) = ( { x } u. { y , z , w } )
5 4 enp1ilem
 |-  ( x e. A -> ( ( A \ { x } ) = { y , z , w } -> A = ( { x , y } u. { z , w } ) ) )
6 5 eximdv
 |-  ( x e. A -> ( E. w ( A \ { x } ) = { y , z , w } -> E. w A = ( { x , y } u. { z , w } ) ) )
7 6 2eximdv
 |-  ( x e. A -> ( E. y E. z E. w ( A \ { x } ) = { y , z , w } -> E. y E. z E. w A = ( { x , y } u. { z , w } ) ) )
8 1 2 3 7 enp1i
 |-  ( A ~~ 4o -> E. x E. y E. z E. w A = ( { x , y } u. { z , w } ) )