Description: If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | encv | |- ( A ~~ B -> ( A e. _V /\ B e. _V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen | |- Rel ~~ |
|
2 | 1 | brrelex12i | |- ( A ~~ B -> ( A e. _V /\ B e. _V ) ) |