| Step | Hyp | Ref | Expression | 
						
							| 1 |  | endisj.1 |  |-  A e. _V | 
						
							| 2 |  | endisj.2 |  |-  B e. _V | 
						
							| 3 |  | 0ex |  |-  (/) e. _V | 
						
							| 4 | 1 3 | xpsnen |  |-  ( A X. { (/) } ) ~~ A | 
						
							| 5 |  | 1oex |  |-  1o e. _V | 
						
							| 6 | 2 5 | xpsnen |  |-  ( B X. { 1o } ) ~~ B | 
						
							| 7 | 4 6 | pm3.2i |  |-  ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) | 
						
							| 8 |  | xp01disj |  |-  ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) | 
						
							| 9 |  | p0ex |  |-  { (/) } e. _V | 
						
							| 10 | 1 9 | xpex |  |-  ( A X. { (/) } ) e. _V | 
						
							| 11 |  | snex |  |-  { 1o } e. _V | 
						
							| 12 | 2 11 | xpex |  |-  ( B X. { 1o } ) e. _V | 
						
							| 13 |  | breq1 |  |-  ( x = ( A X. { (/) } ) -> ( x ~~ A <-> ( A X. { (/) } ) ~~ A ) ) | 
						
							| 14 |  | breq1 |  |-  ( y = ( B X. { 1o } ) -> ( y ~~ B <-> ( B X. { 1o } ) ~~ B ) ) | 
						
							| 15 | 13 14 | bi2anan9 |  |-  ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( ( x ~~ A /\ y ~~ B ) <-> ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) ) ) | 
						
							| 16 |  | ineq12 |  |-  ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( x i^i y ) = ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( ( x i^i y ) = (/) <-> ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) ) ) | 
						
							| 18 | 15 17 | anbi12d |  |-  ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( ( ( x ~~ A /\ y ~~ B ) /\ ( x i^i y ) = (/) ) <-> ( ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) /\ ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) ) ) ) | 
						
							| 19 | 10 12 18 | spc2ev |  |-  ( ( ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) /\ ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) ) -> E. x E. y ( ( x ~~ A /\ y ~~ B ) /\ ( x i^i y ) = (/) ) ) | 
						
							| 20 | 7 8 19 | mp2an |  |-  E. x E. y ( ( x ~~ A /\ y ~~ B ) /\ ( x i^i y ) = (/) ) |