Step |
Hyp |
Ref |
Expression |
1 |
|
df-dju |
|- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
2 |
|
0ex |
|- (/) e. _V |
3 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) |
4 |
2 3
|
mpan |
|- ( A e. V -> ( { (/) } X. A ) ~~ A ) |
5 |
|
1on |
|- 1o e. On |
6 |
|
xpsnen2g |
|- ( ( 1o e. On /\ B e. W ) -> ( { 1o } X. B ) ~~ B ) |
7 |
5 6
|
mpan |
|- ( B e. W -> ( { 1o } X. B ) ~~ B ) |
8 |
4 7
|
anim12i |
|- ( ( A e. V /\ B e. W ) -> ( ( { (/) } X. A ) ~~ A /\ ( { 1o } X. B ) ~~ B ) ) |
9 |
|
xp01disjl |
|- ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) |
10 |
9
|
jctl |
|- ( ( A i^i B ) = (/) -> ( ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) /\ ( A i^i B ) = (/) ) ) |
11 |
|
unen |
|- ( ( ( ( { (/) } X. A ) ~~ A /\ ( { 1o } X. B ) ~~ B ) /\ ( ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) /\ ( A i^i B ) = (/) ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~~ ( A u. B ) ) |
12 |
8 10 11
|
syl2an |
|- ( ( ( A e. V /\ B e. W ) /\ ( A i^i B ) = (/) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~~ ( A u. B ) ) |
13 |
12
|
3impa |
|- ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~~ ( A u. B ) ) |
14 |
1 13
|
eqbrtrid |
|- ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( A u. B ) ) |