| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dju |  |-  ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) | 
						
							| 2 |  | 0ex |  |-  (/) e. _V | 
						
							| 3 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 4 | 2 3 | mpan |  |-  ( A e. V -> ( { (/) } X. A ) ~~ A ) | 
						
							| 5 |  | 1on |  |-  1o e. On | 
						
							| 6 |  | xpsnen2g |  |-  ( ( 1o e. On /\ B e. W ) -> ( { 1o } X. B ) ~~ B ) | 
						
							| 7 | 5 6 | mpan |  |-  ( B e. W -> ( { 1o } X. B ) ~~ B ) | 
						
							| 8 | 4 7 | anim12i |  |-  ( ( A e. V /\ B e. W ) -> ( ( { (/) } X. A ) ~~ A /\ ( { 1o } X. B ) ~~ B ) ) | 
						
							| 9 |  | xp01disjl |  |-  ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) | 
						
							| 10 | 9 | jctl |  |-  ( ( A i^i B ) = (/) -> ( ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) /\ ( A i^i B ) = (/) ) ) | 
						
							| 11 |  | unen |  |-  ( ( ( ( { (/) } X. A ) ~~ A /\ ( { 1o } X. B ) ~~ B ) /\ ( ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) /\ ( A i^i B ) = (/) ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~~ ( A u. B ) ) | 
						
							| 12 | 8 10 11 | syl2an |  |-  ( ( ( A e. V /\ B e. W ) /\ ( A i^i B ) = (/) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~~ ( A u. B ) ) | 
						
							| 13 | 12 | 3impa |  |-  ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~~ ( A u. B ) ) | 
						
							| 14 | 1 13 | eqbrtrid |  |-  ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( A u. B ) ) |