| Step | Hyp | Ref | Expression | 
						
							| 1 |  | endmndlem.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | endmndlem.h |  |-  H = ( Hom ` C ) | 
						
							| 3 |  | endmndlem.o |  |-  .x. = ( comp ` C ) | 
						
							| 4 |  | endmndlem.c |  |-  ( ph -> C e. Cat ) | 
						
							| 5 |  | endmndlem.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | endmndlem.m |  |-  ( ph -> ( X H X ) = ( Base ` M ) ) | 
						
							| 7 |  | endmndlem.p |  |-  ( ph -> ( <. X , X >. .x. X ) = ( +g ` M ) ) | 
						
							| 8 | 4 | 3ad2ant1 |  |-  ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> C e. Cat ) | 
						
							| 9 | 5 | 3ad2ant1 |  |-  ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> X e. B ) | 
						
							| 10 |  | simp3 |  |-  ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> g e. ( X H X ) ) | 
						
							| 11 |  | simp2 |  |-  ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> f e. ( X H X ) ) | 
						
							| 12 | 1 2 3 8 9 9 9 10 11 | catcocl |  |-  ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> ( f ( <. X , X >. .x. X ) g ) e. ( X H X ) ) | 
						
							| 13 | 4 | adantr |  |-  ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> C e. Cat ) | 
						
							| 14 | 5 | adantr |  |-  ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> X e. B ) | 
						
							| 15 |  | simpr3 |  |-  ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> k e. ( X H X ) ) | 
						
							| 16 |  | simpr2 |  |-  ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> g e. ( X H X ) ) | 
						
							| 17 |  | simpr1 |  |-  ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> f e. ( X H X ) ) | 
						
							| 18 | 1 2 3 13 14 14 14 15 16 14 17 | catass |  |-  ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> ( ( f ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) k ) = ( f ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) k ) ) ) | 
						
							| 19 |  | eqid |  |-  ( Id ` C ) = ( Id ` C ) | 
						
							| 20 | 1 2 19 4 5 | catidcl |  |-  ( ph -> ( ( Id ` C ) ` X ) e. ( X H X ) ) | 
						
							| 21 | 4 | adantr |  |-  ( ( ph /\ f e. ( X H X ) ) -> C e. Cat ) | 
						
							| 22 | 5 | adantr |  |-  ( ( ph /\ f e. ( X H X ) ) -> X e. B ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ f e. ( X H X ) ) -> f e. ( X H X ) ) | 
						
							| 24 | 1 2 19 21 22 3 22 23 | catlid |  |-  ( ( ph /\ f e. ( X H X ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , X >. .x. X ) f ) = f ) | 
						
							| 25 | 1 2 19 21 22 3 22 23 | catrid |  |-  ( ( ph /\ f e. ( X H X ) ) -> ( f ( <. X , X >. .x. X ) ( ( Id ` C ) ` X ) ) = f ) | 
						
							| 26 | 6 7 12 18 20 24 25 | ismndd |  |-  ( ph -> M e. Mnd ) |