Metamath Proof Explorer


Theorem enfiALT

Description: Shorter proof of enfi using ax-pow . (Contributed by NM, 22-Aug-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion enfiALT
|- ( A ~~ B -> ( A e. Fin <-> B e. Fin ) )

Proof

Step Hyp Ref Expression
1 enen1
 |-  ( A ~~ B -> ( A ~~ x <-> B ~~ x ) )
2 1 rexbidv
 |-  ( A ~~ B -> ( E. x e. _om A ~~ x <-> E. x e. _om B ~~ x ) )
3 isfi
 |-  ( A e. Fin <-> E. x e. _om A ~~ x )
4 isfi
 |-  ( B e. Fin <-> E. x e. _om B ~~ x )
5 2 3 4 3bitr4g
 |-  ( A ~~ B -> ( A e. Fin <-> B e. Fin ) )