| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfi |
|- ( B e. Fin <-> E. x e. _om B ~~ x ) |
| 2 |
|
df-rex |
|- ( E. x e. _om B ~~ x <-> E. x ( x e. _om /\ B ~~ x ) ) |
| 3 |
1 2
|
sylbb |
|- ( B e. Fin -> E. x ( x e. _om /\ B ~~ x ) ) |
| 4 |
|
ensymfib |
|- ( B e. Fin -> ( B ~~ A <-> A ~~ B ) ) |
| 5 |
4
|
biimparc |
|- ( ( A ~~ B /\ B e. Fin ) -> B ~~ A ) |
| 6 |
|
19.41v |
|- ( E. x ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) <-> ( E. x ( x e. _om /\ B ~~ x ) /\ B ~~ A ) ) |
| 7 |
|
simp1 |
|- ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> x e. _om ) |
| 8 |
|
nnfi |
|- ( x e. _om -> x e. Fin ) |
| 9 |
|
ensymfib |
|- ( x e. Fin -> ( x ~~ B <-> B ~~ x ) ) |
| 10 |
9
|
biimpar |
|- ( ( x e. Fin /\ B ~~ x ) -> x ~~ B ) |
| 11 |
10
|
3adant3 |
|- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> x ~~ B ) |
| 12 |
|
entrfil |
|- ( ( x e. Fin /\ x ~~ B /\ B ~~ A ) -> x ~~ A ) |
| 13 |
11 12
|
syld3an2 |
|- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> x ~~ A ) |
| 14 |
|
ensymfib |
|- ( x e. Fin -> ( x ~~ A <-> A ~~ x ) ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> ( x ~~ A <-> A ~~ x ) ) |
| 16 |
13 15
|
mpbid |
|- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> A ~~ x ) |
| 17 |
8 16
|
syl3an1 |
|- ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> A ~~ x ) |
| 18 |
7 17
|
jca |
|- ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> ( x e. _om /\ A ~~ x ) ) |
| 19 |
18
|
3expa |
|- ( ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> ( x e. _om /\ A ~~ x ) ) |
| 20 |
19
|
eximi |
|- ( E. x ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> E. x ( x e. _om /\ A ~~ x ) ) |
| 21 |
6 20
|
sylbir |
|- ( ( E. x ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> E. x ( x e. _om /\ A ~~ x ) ) |
| 22 |
3 5 21
|
syl2an2 |
|- ( ( A ~~ B /\ B e. Fin ) -> E. x ( x e. _om /\ A ~~ x ) ) |
| 23 |
|
df-rex |
|- ( E. x e. _om A ~~ x <-> E. x ( x e. _om /\ A ~~ x ) ) |
| 24 |
22 23
|
sylibr |
|- ( ( A ~~ B /\ B e. Fin ) -> E. x e. _om A ~~ x ) |
| 25 |
|
isfi |
|- ( A e. Fin <-> E. x e. _om A ~~ x ) |
| 26 |
24 25
|
sylibr |
|- ( ( A ~~ B /\ B e. Fin ) -> A e. Fin ) |
| 27 |
26
|
ancoms |
|- ( ( B e. Fin /\ A ~~ B ) -> A e. Fin ) |