Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
|- ( B e. Fin <-> E. x e. _om B ~~ x ) |
2 |
|
df-rex |
|- ( E. x e. _om B ~~ x <-> E. x ( x e. _om /\ B ~~ x ) ) |
3 |
1 2
|
sylbb |
|- ( B e. Fin -> E. x ( x e. _om /\ B ~~ x ) ) |
4 |
|
ensymfib |
|- ( B e. Fin -> ( B ~~ A <-> A ~~ B ) ) |
5 |
4
|
biimparc |
|- ( ( A ~~ B /\ B e. Fin ) -> B ~~ A ) |
6 |
|
19.41v |
|- ( E. x ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) <-> ( E. x ( x e. _om /\ B ~~ x ) /\ B ~~ A ) ) |
7 |
|
simp1 |
|- ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> x e. _om ) |
8 |
|
nnfi |
|- ( x e. _om -> x e. Fin ) |
9 |
|
ensymfib |
|- ( x e. Fin -> ( x ~~ B <-> B ~~ x ) ) |
10 |
9
|
biimpar |
|- ( ( x e. Fin /\ B ~~ x ) -> x ~~ B ) |
11 |
10
|
3adant3 |
|- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> x ~~ B ) |
12 |
|
entrfil |
|- ( ( x e. Fin /\ x ~~ B /\ B ~~ A ) -> x ~~ A ) |
13 |
11 12
|
syld3an2 |
|- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> x ~~ A ) |
14 |
|
ensymfib |
|- ( x e. Fin -> ( x ~~ A <-> A ~~ x ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> ( x ~~ A <-> A ~~ x ) ) |
16 |
13 15
|
mpbid |
|- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> A ~~ x ) |
17 |
8 16
|
syl3an1 |
|- ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> A ~~ x ) |
18 |
7 17
|
jca |
|- ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> ( x e. _om /\ A ~~ x ) ) |
19 |
18
|
3expa |
|- ( ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> ( x e. _om /\ A ~~ x ) ) |
20 |
19
|
eximi |
|- ( E. x ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> E. x ( x e. _om /\ A ~~ x ) ) |
21 |
6 20
|
sylbir |
|- ( ( E. x ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> E. x ( x e. _om /\ A ~~ x ) ) |
22 |
3 5 21
|
syl2an2 |
|- ( ( A ~~ B /\ B e. Fin ) -> E. x ( x e. _om /\ A ~~ x ) ) |
23 |
|
df-rex |
|- ( E. x e. _om A ~~ x <-> E. x ( x e. _om /\ A ~~ x ) ) |
24 |
22 23
|
sylibr |
|- ( ( A ~~ B /\ B e. Fin ) -> E. x e. _om A ~~ x ) |
25 |
|
isfi |
|- ( A e. Fin <-> E. x e. _om A ~~ x ) |
26 |
24 25
|
sylibr |
|- ( ( A ~~ B /\ B e. Fin ) -> A e. Fin ) |
27 |
26
|
ancoms |
|- ( ( B e. Fin /\ A ~~ B ) -> A e. Fin ) |