Metamath Proof Explorer


Theorem enfiiOLD

Description: Obsolete version of enfii as of 23-Sep-2024. (Contributed by Mario Carneiro, 12-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion enfiiOLD
|- ( ( B e. Fin /\ A ~~ B ) -> A e. Fin )

Proof

Step Hyp Ref Expression
1 enfi
 |-  ( A ~~ B -> ( A e. Fin <-> B e. Fin ) )
2 1 biimparc
 |-  ( ( B e. Fin /\ A ~~ B ) -> A e. Fin )