| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bren |
|- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |
| 2 |
|
elpwi |
|- ( x e. ~P ~P B -> x C_ ~P B ) |
| 3 |
|
imauni |
|- ( f " U. { y e. ~P A | ( f " y ) e. x } ) = U_ z e. { y e. ~P A | ( f " y ) e. x } ( f " z ) |
| 4 |
|
vex |
|- f e. _V |
| 5 |
4
|
imaex |
|- ( f " z ) e. _V |
| 6 |
5
|
dfiun2 |
|- U_ z e. { y e. ~P A | ( f " y ) e. x } ( f " z ) = U. { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } |
| 7 |
3 6
|
eqtri |
|- ( f " U. { y e. ~P A | ( f " y ) e. x } ) = U. { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } |
| 8 |
|
imaeq2 |
|- ( y = z -> ( f " y ) = ( f " z ) ) |
| 9 |
8
|
eleq1d |
|- ( y = z -> ( ( f " y ) e. x <-> ( f " z ) e. x ) ) |
| 10 |
9
|
rexrab |
|- ( E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) <-> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) |
| 11 |
|
eleq1 |
|- ( w = ( f " z ) -> ( w e. x <-> ( f " z ) e. x ) ) |
| 12 |
11
|
biimparc |
|- ( ( ( f " z ) e. x /\ w = ( f " z ) ) -> w e. x ) |
| 13 |
12
|
rexlimivw |
|- ( E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) -> w e. x ) |
| 14 |
|
cnvimass |
|- ( `' f " w ) C_ dom f |
| 15 |
|
f1odm |
|- ( f : A -1-1-onto-> B -> dom f = A ) |
| 16 |
15
|
ad3antrrr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> dom f = A ) |
| 17 |
14 16
|
sseqtrid |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( `' f " w ) C_ A ) |
| 18 |
4
|
cnvex |
|- `' f e. _V |
| 19 |
18
|
imaex |
|- ( `' f " w ) e. _V |
| 20 |
19
|
elpw |
|- ( ( `' f " w ) e. ~P A <-> ( `' f " w ) C_ A ) |
| 21 |
17 20
|
sylibr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( `' f " w ) e. ~P A ) |
| 22 |
|
f1ofo |
|- ( f : A -1-1-onto-> B -> f : A -onto-> B ) |
| 23 |
22
|
ad3antrrr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> f : A -onto-> B ) |
| 24 |
|
simprl |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> x C_ ~P B ) |
| 25 |
24
|
sselda |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w e. ~P B ) |
| 26 |
25
|
elpwid |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w C_ B ) |
| 27 |
|
foimacnv |
|- ( ( f : A -onto-> B /\ w C_ B ) -> ( f " ( `' f " w ) ) = w ) |
| 28 |
23 26 27
|
syl2anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( f " ( `' f " w ) ) = w ) |
| 29 |
28
|
eqcomd |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w = ( f " ( `' f " w ) ) ) |
| 30 |
|
simpr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w e. x ) |
| 31 |
29 30
|
eqeltrrd |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( f " ( `' f " w ) ) e. x ) |
| 32 |
|
imaeq2 |
|- ( z = ( `' f " w ) -> ( f " z ) = ( f " ( `' f " w ) ) ) |
| 33 |
32
|
eleq1d |
|- ( z = ( `' f " w ) -> ( ( f " z ) e. x <-> ( f " ( `' f " w ) ) e. x ) ) |
| 34 |
32
|
eqeq2d |
|- ( z = ( `' f " w ) -> ( w = ( f " z ) <-> w = ( f " ( `' f " w ) ) ) ) |
| 35 |
33 34
|
anbi12d |
|- ( z = ( `' f " w ) -> ( ( ( f " z ) e. x /\ w = ( f " z ) ) <-> ( ( f " ( `' f " w ) ) e. x /\ w = ( f " ( `' f " w ) ) ) ) ) |
| 36 |
35
|
rspcev |
|- ( ( ( `' f " w ) e. ~P A /\ ( ( f " ( `' f " w ) ) e. x /\ w = ( f " ( `' f " w ) ) ) ) -> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) |
| 37 |
21 31 29 36
|
syl12anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) |
| 38 |
37
|
ex |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( w e. x -> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) ) |
| 39 |
13 38
|
impbid2 |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) <-> w e. x ) ) |
| 40 |
10 39
|
bitrid |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) <-> w e. x ) ) |
| 41 |
40
|
eqabcdv |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } = x ) |
| 42 |
41
|
unieqd |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> U. { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } = U. x ) |
| 43 |
7 42
|
eqtrid |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( f " U. { y e. ~P A | ( f " y ) e. x } ) = U. x ) |
| 44 |
|
simplr |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> A e. Fin2 ) |
| 45 |
|
ssrab2 |
|- { y e. ~P A | ( f " y ) e. x } C_ ~P A |
| 46 |
45
|
a1i |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> { y e. ~P A | ( f " y ) e. x } C_ ~P A ) |
| 47 |
|
simprrl |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> x =/= (/) ) |
| 48 |
|
n0 |
|- ( x =/= (/) <-> E. w w e. x ) |
| 49 |
47 48
|
sylib |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> E. w w e. x ) |
| 50 |
|
imaeq2 |
|- ( y = ( `' f " w ) -> ( f " y ) = ( f " ( `' f " w ) ) ) |
| 51 |
50
|
eleq1d |
|- ( y = ( `' f " w ) -> ( ( f " y ) e. x <-> ( f " ( `' f " w ) ) e. x ) ) |
| 52 |
51
|
rspcev |
|- ( ( ( `' f " w ) e. ~P A /\ ( f " ( `' f " w ) ) e. x ) -> E. y e. ~P A ( f " y ) e. x ) |
| 53 |
21 31 52
|
syl2anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> E. y e. ~P A ( f " y ) e. x ) |
| 54 |
49 53
|
exlimddv |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> E. y e. ~P A ( f " y ) e. x ) |
| 55 |
|
rabn0 |
|- ( { y e. ~P A | ( f " y ) e. x } =/= (/) <-> E. y e. ~P A ( f " y ) e. x ) |
| 56 |
54 55
|
sylibr |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> { y e. ~P A | ( f " y ) e. x } =/= (/) ) |
| 57 |
9
|
elrab |
|- ( z e. { y e. ~P A | ( f " y ) e. x } <-> ( z e. ~P A /\ ( f " z ) e. x ) ) |
| 58 |
|
imaeq2 |
|- ( y = w -> ( f " y ) = ( f " w ) ) |
| 59 |
58
|
eleq1d |
|- ( y = w -> ( ( f " y ) e. x <-> ( f " w ) e. x ) ) |
| 60 |
59
|
elrab |
|- ( w e. { y e. ~P A | ( f " y ) e. x } <-> ( w e. ~P A /\ ( f " w ) e. x ) ) |
| 61 |
57 60
|
anbi12i |
|- ( ( z e. { y e. ~P A | ( f " y ) e. x } /\ w e. { y e. ~P A | ( f " y ) e. x } ) <-> ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) |
| 62 |
|
simprrr |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> [C.] Or x ) |
| 63 |
62
|
adantr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> [C.] Or x ) |
| 64 |
|
simprlr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( f " z ) e. x ) |
| 65 |
|
simprrr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( f " w ) e. x ) |
| 66 |
|
sorpssi |
|- ( ( [C.] Or x /\ ( ( f " z ) e. x /\ ( f " w ) e. x ) ) -> ( ( f " z ) C_ ( f " w ) \/ ( f " w ) C_ ( f " z ) ) ) |
| 67 |
63 64 65 66
|
syl12anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( f " z ) C_ ( f " w ) \/ ( f " w ) C_ ( f " z ) ) ) |
| 68 |
|
f1of1 |
|- ( f : A -1-1-onto-> B -> f : A -1-1-> B ) |
| 69 |
68
|
ad3antrrr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> f : A -1-1-> B ) |
| 70 |
|
simprll |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> z e. ~P A ) |
| 71 |
70
|
elpwid |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> z C_ A ) |
| 72 |
|
simprrl |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> w e. ~P A ) |
| 73 |
72
|
elpwid |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> w C_ A ) |
| 74 |
|
f1imass |
|- ( ( f : A -1-1-> B /\ ( z C_ A /\ w C_ A ) ) -> ( ( f " z ) C_ ( f " w ) <-> z C_ w ) ) |
| 75 |
69 71 73 74
|
syl12anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( f " z ) C_ ( f " w ) <-> z C_ w ) ) |
| 76 |
|
f1imass |
|- ( ( f : A -1-1-> B /\ ( w C_ A /\ z C_ A ) ) -> ( ( f " w ) C_ ( f " z ) <-> w C_ z ) ) |
| 77 |
69 73 71 76
|
syl12anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( f " w ) C_ ( f " z ) <-> w C_ z ) ) |
| 78 |
75 77
|
orbi12d |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( ( f " z ) C_ ( f " w ) \/ ( f " w ) C_ ( f " z ) ) <-> ( z C_ w \/ w C_ z ) ) ) |
| 79 |
67 78
|
mpbid |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( z C_ w \/ w C_ z ) ) |
| 80 |
61 79
|
sylan2b |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( z e. { y e. ~P A | ( f " y ) e. x } /\ w e. { y e. ~P A | ( f " y ) e. x } ) ) -> ( z C_ w \/ w C_ z ) ) |
| 81 |
80
|
ralrimivva |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> A. z e. { y e. ~P A | ( f " y ) e. x } A. w e. { y e. ~P A | ( f " y ) e. x } ( z C_ w \/ w C_ z ) ) |
| 82 |
|
sorpss |
|- ( [C.] Or { y e. ~P A | ( f " y ) e. x } <-> A. z e. { y e. ~P A | ( f " y ) e. x } A. w e. { y e. ~P A | ( f " y ) e. x } ( z C_ w \/ w C_ z ) ) |
| 83 |
81 82
|
sylibr |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> [C.] Or { y e. ~P A | ( f " y ) e. x } ) |
| 84 |
|
fin2i |
|- ( ( ( A e. Fin2 /\ { y e. ~P A | ( f " y ) e. x } C_ ~P A ) /\ ( { y e. ~P A | ( f " y ) e. x } =/= (/) /\ [C.] Or { y e. ~P A | ( f " y ) e. x } ) ) -> U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } ) |
| 85 |
44 46 56 83 84
|
syl22anc |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } ) |
| 86 |
|
imaeq2 |
|- ( z = U. { y e. ~P A | ( f " y ) e. x } -> ( f " z ) = ( f " U. { y e. ~P A | ( f " y ) e. x } ) ) |
| 87 |
86
|
eleq1d |
|- ( z = U. { y e. ~P A | ( f " y ) e. x } -> ( ( f " z ) e. x <-> ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) ) |
| 88 |
9
|
cbvrabv |
|- { y e. ~P A | ( f " y ) e. x } = { z e. ~P A | ( f " z ) e. x } |
| 89 |
87 88
|
elrab2 |
|- ( U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } <-> ( U. { y e. ~P A | ( f " y ) e. x } e. ~P A /\ ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) ) |
| 90 |
89
|
simprbi |
|- ( U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } -> ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) |
| 91 |
85 90
|
syl |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) |
| 92 |
43 91
|
eqeltrrd |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> U. x e. x ) |
| 93 |
92
|
expr |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ x C_ ~P B ) -> ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
| 94 |
2 93
|
sylan2 |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ x e. ~P ~P B ) -> ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
| 95 |
94
|
ralrimiva |
|- ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
| 96 |
95
|
ex |
|- ( f : A -1-1-onto-> B -> ( A e. Fin2 -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
| 97 |
96
|
exlimiv |
|- ( E. f f : A -1-1-onto-> B -> ( A e. Fin2 -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
| 98 |
1 97
|
sylbi |
|- ( A ~~ B -> ( A e. Fin2 -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
| 99 |
|
relen |
|- Rel ~~ |
| 100 |
99
|
brrelex2i |
|- ( A ~~ B -> B e. _V ) |
| 101 |
|
isfin2 |
|- ( B e. _V -> ( B e. Fin2 <-> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
| 102 |
100 101
|
syl |
|- ( A ~~ B -> ( B e. Fin2 <-> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
| 103 |
98 102
|
sylibrd |
|- ( A ~~ B -> ( A e. Fin2 -> B e. Fin2 ) ) |