Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
|- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |
2 |
|
elpwi |
|- ( x e. ~P ~P B -> x C_ ~P B ) |
3 |
|
imauni |
|- ( f " U. { y e. ~P A | ( f " y ) e. x } ) = U_ z e. { y e. ~P A | ( f " y ) e. x } ( f " z ) |
4 |
|
vex |
|- f e. _V |
5 |
4
|
imaex |
|- ( f " z ) e. _V |
6 |
5
|
dfiun2 |
|- U_ z e. { y e. ~P A | ( f " y ) e. x } ( f " z ) = U. { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } |
7 |
3 6
|
eqtri |
|- ( f " U. { y e. ~P A | ( f " y ) e. x } ) = U. { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } |
8 |
|
imaeq2 |
|- ( y = z -> ( f " y ) = ( f " z ) ) |
9 |
8
|
eleq1d |
|- ( y = z -> ( ( f " y ) e. x <-> ( f " z ) e. x ) ) |
10 |
9
|
rexrab |
|- ( E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) <-> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) |
11 |
|
eleq1 |
|- ( w = ( f " z ) -> ( w e. x <-> ( f " z ) e. x ) ) |
12 |
11
|
biimparc |
|- ( ( ( f " z ) e. x /\ w = ( f " z ) ) -> w e. x ) |
13 |
12
|
rexlimivw |
|- ( E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) -> w e. x ) |
14 |
|
cnvimass |
|- ( `' f " w ) C_ dom f |
15 |
|
f1odm |
|- ( f : A -1-1-onto-> B -> dom f = A ) |
16 |
15
|
ad3antrrr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> dom f = A ) |
17 |
14 16
|
sseqtrid |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( `' f " w ) C_ A ) |
18 |
4
|
cnvex |
|- `' f e. _V |
19 |
18
|
imaex |
|- ( `' f " w ) e. _V |
20 |
19
|
elpw |
|- ( ( `' f " w ) e. ~P A <-> ( `' f " w ) C_ A ) |
21 |
17 20
|
sylibr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( `' f " w ) e. ~P A ) |
22 |
|
f1ofo |
|- ( f : A -1-1-onto-> B -> f : A -onto-> B ) |
23 |
22
|
ad3antrrr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> f : A -onto-> B ) |
24 |
|
simprl |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> x C_ ~P B ) |
25 |
24
|
sselda |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w e. ~P B ) |
26 |
25
|
elpwid |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w C_ B ) |
27 |
|
foimacnv |
|- ( ( f : A -onto-> B /\ w C_ B ) -> ( f " ( `' f " w ) ) = w ) |
28 |
23 26 27
|
syl2anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( f " ( `' f " w ) ) = w ) |
29 |
28
|
eqcomd |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w = ( f " ( `' f " w ) ) ) |
30 |
|
simpr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w e. x ) |
31 |
29 30
|
eqeltrrd |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( f " ( `' f " w ) ) e. x ) |
32 |
|
imaeq2 |
|- ( z = ( `' f " w ) -> ( f " z ) = ( f " ( `' f " w ) ) ) |
33 |
32
|
eleq1d |
|- ( z = ( `' f " w ) -> ( ( f " z ) e. x <-> ( f " ( `' f " w ) ) e. x ) ) |
34 |
32
|
eqeq2d |
|- ( z = ( `' f " w ) -> ( w = ( f " z ) <-> w = ( f " ( `' f " w ) ) ) ) |
35 |
33 34
|
anbi12d |
|- ( z = ( `' f " w ) -> ( ( ( f " z ) e. x /\ w = ( f " z ) ) <-> ( ( f " ( `' f " w ) ) e. x /\ w = ( f " ( `' f " w ) ) ) ) ) |
36 |
35
|
rspcev |
|- ( ( ( `' f " w ) e. ~P A /\ ( ( f " ( `' f " w ) ) e. x /\ w = ( f " ( `' f " w ) ) ) ) -> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) |
37 |
21 31 29 36
|
syl12anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) |
38 |
37
|
ex |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( w e. x -> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) ) |
39 |
13 38
|
impbid2 |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) <-> w e. x ) ) |
40 |
10 39
|
syl5bb |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) <-> w e. x ) ) |
41 |
40
|
abbi1dv |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } = x ) |
42 |
41
|
unieqd |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> U. { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } = U. x ) |
43 |
7 42
|
eqtrid |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( f " U. { y e. ~P A | ( f " y ) e. x } ) = U. x ) |
44 |
|
simplr |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> A e. Fin2 ) |
45 |
|
ssrab2 |
|- { y e. ~P A | ( f " y ) e. x } C_ ~P A |
46 |
45
|
a1i |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> { y e. ~P A | ( f " y ) e. x } C_ ~P A ) |
47 |
|
simprrl |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> x =/= (/) ) |
48 |
|
n0 |
|- ( x =/= (/) <-> E. w w e. x ) |
49 |
47 48
|
sylib |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> E. w w e. x ) |
50 |
|
imaeq2 |
|- ( y = ( `' f " w ) -> ( f " y ) = ( f " ( `' f " w ) ) ) |
51 |
50
|
eleq1d |
|- ( y = ( `' f " w ) -> ( ( f " y ) e. x <-> ( f " ( `' f " w ) ) e. x ) ) |
52 |
51
|
rspcev |
|- ( ( ( `' f " w ) e. ~P A /\ ( f " ( `' f " w ) ) e. x ) -> E. y e. ~P A ( f " y ) e. x ) |
53 |
21 31 52
|
syl2anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> E. y e. ~P A ( f " y ) e. x ) |
54 |
49 53
|
exlimddv |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> E. y e. ~P A ( f " y ) e. x ) |
55 |
|
rabn0 |
|- ( { y e. ~P A | ( f " y ) e. x } =/= (/) <-> E. y e. ~P A ( f " y ) e. x ) |
56 |
54 55
|
sylibr |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> { y e. ~P A | ( f " y ) e. x } =/= (/) ) |
57 |
9
|
elrab |
|- ( z e. { y e. ~P A | ( f " y ) e. x } <-> ( z e. ~P A /\ ( f " z ) e. x ) ) |
58 |
|
imaeq2 |
|- ( y = w -> ( f " y ) = ( f " w ) ) |
59 |
58
|
eleq1d |
|- ( y = w -> ( ( f " y ) e. x <-> ( f " w ) e. x ) ) |
60 |
59
|
elrab |
|- ( w e. { y e. ~P A | ( f " y ) e. x } <-> ( w e. ~P A /\ ( f " w ) e. x ) ) |
61 |
57 60
|
anbi12i |
|- ( ( z e. { y e. ~P A | ( f " y ) e. x } /\ w e. { y e. ~P A | ( f " y ) e. x } ) <-> ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) |
62 |
|
simprrr |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> [C.] Or x ) |
63 |
62
|
adantr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> [C.] Or x ) |
64 |
|
simprlr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( f " z ) e. x ) |
65 |
|
simprrr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( f " w ) e. x ) |
66 |
|
sorpssi |
|- ( ( [C.] Or x /\ ( ( f " z ) e. x /\ ( f " w ) e. x ) ) -> ( ( f " z ) C_ ( f " w ) \/ ( f " w ) C_ ( f " z ) ) ) |
67 |
63 64 65 66
|
syl12anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( f " z ) C_ ( f " w ) \/ ( f " w ) C_ ( f " z ) ) ) |
68 |
|
f1of1 |
|- ( f : A -1-1-onto-> B -> f : A -1-1-> B ) |
69 |
68
|
ad3antrrr |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> f : A -1-1-> B ) |
70 |
|
simprll |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> z e. ~P A ) |
71 |
70
|
elpwid |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> z C_ A ) |
72 |
|
simprrl |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> w e. ~P A ) |
73 |
72
|
elpwid |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> w C_ A ) |
74 |
|
f1imass |
|- ( ( f : A -1-1-> B /\ ( z C_ A /\ w C_ A ) ) -> ( ( f " z ) C_ ( f " w ) <-> z C_ w ) ) |
75 |
69 71 73 74
|
syl12anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( f " z ) C_ ( f " w ) <-> z C_ w ) ) |
76 |
|
f1imass |
|- ( ( f : A -1-1-> B /\ ( w C_ A /\ z C_ A ) ) -> ( ( f " w ) C_ ( f " z ) <-> w C_ z ) ) |
77 |
69 73 71 76
|
syl12anc |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( f " w ) C_ ( f " z ) <-> w C_ z ) ) |
78 |
75 77
|
orbi12d |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( ( f " z ) C_ ( f " w ) \/ ( f " w ) C_ ( f " z ) ) <-> ( z C_ w \/ w C_ z ) ) ) |
79 |
67 78
|
mpbid |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( z C_ w \/ w C_ z ) ) |
80 |
61 79
|
sylan2b |
|- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( z e. { y e. ~P A | ( f " y ) e. x } /\ w e. { y e. ~P A | ( f " y ) e. x } ) ) -> ( z C_ w \/ w C_ z ) ) |
81 |
80
|
ralrimivva |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> A. z e. { y e. ~P A | ( f " y ) e. x } A. w e. { y e. ~P A | ( f " y ) e. x } ( z C_ w \/ w C_ z ) ) |
82 |
|
sorpss |
|- ( [C.] Or { y e. ~P A | ( f " y ) e. x } <-> A. z e. { y e. ~P A | ( f " y ) e. x } A. w e. { y e. ~P A | ( f " y ) e. x } ( z C_ w \/ w C_ z ) ) |
83 |
81 82
|
sylibr |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> [C.] Or { y e. ~P A | ( f " y ) e. x } ) |
84 |
|
fin2i |
|- ( ( ( A e. Fin2 /\ { y e. ~P A | ( f " y ) e. x } C_ ~P A ) /\ ( { y e. ~P A | ( f " y ) e. x } =/= (/) /\ [C.] Or { y e. ~P A | ( f " y ) e. x } ) ) -> U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } ) |
85 |
44 46 56 83 84
|
syl22anc |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } ) |
86 |
|
imaeq2 |
|- ( z = U. { y e. ~P A | ( f " y ) e. x } -> ( f " z ) = ( f " U. { y e. ~P A | ( f " y ) e. x } ) ) |
87 |
86
|
eleq1d |
|- ( z = U. { y e. ~P A | ( f " y ) e. x } -> ( ( f " z ) e. x <-> ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) ) |
88 |
9
|
cbvrabv |
|- { y e. ~P A | ( f " y ) e. x } = { z e. ~P A | ( f " z ) e. x } |
89 |
87 88
|
elrab2 |
|- ( U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } <-> ( U. { y e. ~P A | ( f " y ) e. x } e. ~P A /\ ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) ) |
90 |
89
|
simprbi |
|- ( U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } -> ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) |
91 |
85 90
|
syl |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) |
92 |
43 91
|
eqeltrrd |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> U. x e. x ) |
93 |
92
|
expr |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ x C_ ~P B ) -> ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
94 |
2 93
|
sylan2 |
|- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ x e. ~P ~P B ) -> ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
95 |
94
|
ralrimiva |
|- ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
96 |
95
|
ex |
|- ( f : A -1-1-onto-> B -> ( A e. Fin2 -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
97 |
96
|
exlimiv |
|- ( E. f f : A -1-1-onto-> B -> ( A e. Fin2 -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
98 |
1 97
|
sylbi |
|- ( A ~~ B -> ( A e. Fin2 -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
99 |
|
relen |
|- Rel ~~ |
100 |
99
|
brrelex2i |
|- ( A ~~ B -> B e. _V ) |
101 |
|
isfin2 |
|- ( B e. _V -> ( B e. Fin2 <-> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
102 |
100 101
|
syl |
|- ( A ~~ B -> ( B e. Fin2 <-> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
103 |
98 102
|
sylibrd |
|- ( A ~~ B -> ( A e. Fin2 -> B e. Fin2 ) ) |