Step |
Hyp |
Ref |
Expression |
1 |
|
enfi |
|- ( A ~~ B -> ( A e. Fin <-> B e. Fin ) ) |
2 |
|
sdomen1 |
|- ( A ~~ B -> ( A ~< x <-> B ~< x ) ) |
3 |
|
pwen |
|- ( A ~~ B -> ~P A ~~ ~P B ) |
4 |
|
sdomen2 |
|- ( ~P A ~~ ~P B -> ( x ~< ~P A <-> x ~< ~P B ) ) |
5 |
3 4
|
syl |
|- ( A ~~ B -> ( x ~< ~P A <-> x ~< ~P B ) ) |
6 |
2 5
|
anbi12d |
|- ( A ~~ B -> ( ( A ~< x /\ x ~< ~P A ) <-> ( B ~< x /\ x ~< ~P B ) ) ) |
7 |
6
|
notbid |
|- ( A ~~ B -> ( -. ( A ~< x /\ x ~< ~P A ) <-> -. ( B ~< x /\ x ~< ~P B ) ) ) |
8 |
7
|
albidv |
|- ( A ~~ B -> ( A. x -. ( A ~< x /\ x ~< ~P A ) <-> A. x -. ( B ~< x /\ x ~< ~P B ) ) ) |
9 |
1 8
|
orbi12d |
|- ( A ~~ B -> ( ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) <-> ( B e. Fin \/ A. x -. ( B ~< x /\ x ~< ~P B ) ) ) ) |
10 |
|
relen |
|- Rel ~~ |
11 |
10
|
brrelex1i |
|- ( A ~~ B -> A e. _V ) |
12 |
|
elgch |
|- ( A e. _V -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
13 |
11 12
|
syl |
|- ( A ~~ B -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
14 |
10
|
brrelex2i |
|- ( A ~~ B -> B e. _V ) |
15 |
|
elgch |
|- ( B e. _V -> ( B e. GCH <-> ( B e. Fin \/ A. x -. ( B ~< x /\ x ~< ~P B ) ) ) ) |
16 |
14 15
|
syl |
|- ( A ~~ B -> ( B e. GCH <-> ( B e. Fin \/ A. x -. ( B ~< x /\ x ~< ~P B ) ) ) ) |
17 |
9 13 16
|
3bitr4d |
|- ( A ~~ B -> ( A e. GCH <-> B e. GCH ) ) |