Description: Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ennum | |- ( A ~~ B -> ( A e. dom card <-> B e. dom card ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enen2 | |- ( A ~~ B -> ( x ~~ A <-> x ~~ B ) ) |
|
| 2 | 1 | rexbidv | |- ( A ~~ B -> ( E. x e. On x ~~ A <-> E. x e. On x ~~ B ) ) |
| 3 | isnum2 | |- ( A e. dom card <-> E. x e. On x ~~ A ) |
|
| 4 | isnum2 | |- ( B e. dom card <-> E. x e. On x ~~ B ) |
|
| 5 | 2 3 4 | 3bitr4g | |- ( A ~~ B -> ( A e. dom card <-> B e. dom card ) ) |