Step |
Hyp |
Ref |
Expression |
1 |
|
enp1i.1 |
|- Ord M |
2 |
|
enp1i.2 |
|- N = suc M |
3 |
|
enp1i.3 |
|- ( ( A \ { x } ) ~~ M -> ph ) |
4 |
|
enp1i.4 |
|- ( x e. A -> ( ph -> ps ) ) |
5 |
2
|
breq2i |
|- ( A ~~ N <-> A ~~ suc M ) |
6 |
|
encv |
|- ( A ~~ suc M -> ( A e. _V /\ suc M e. _V ) ) |
7 |
6
|
simprd |
|- ( A ~~ suc M -> suc M e. _V ) |
8 |
|
sssucid |
|- M C_ suc M |
9 |
|
ssexg |
|- ( ( M C_ suc M /\ suc M e. _V ) -> M e. _V ) |
10 |
8 9
|
mpan |
|- ( suc M e. _V -> M e. _V ) |
11 |
|
elong |
|- ( M e. _V -> ( M e. On <-> Ord M ) ) |
12 |
7 10 11
|
3syl |
|- ( A ~~ suc M -> ( M e. On <-> Ord M ) ) |
13 |
1 12
|
mpbiri |
|- ( A ~~ suc M -> M e. On ) |
14 |
|
rexdif1en |
|- ( ( M e. On /\ A ~~ suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) |
15 |
13 14
|
mpancom |
|- ( A ~~ suc M -> E. x e. A ( A \ { x } ) ~~ M ) |
16 |
3
|
reximi |
|- ( E. x e. A ( A \ { x } ) ~~ M -> E. x e. A ph ) |
17 |
|
df-rex |
|- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
18 |
4
|
imp |
|- ( ( x e. A /\ ph ) -> ps ) |
19 |
18
|
eximi |
|- ( E. x ( x e. A /\ ph ) -> E. x ps ) |
20 |
17 19
|
sylbi |
|- ( E. x e. A ph -> E. x ps ) |
21 |
15 16 20
|
3syl |
|- ( A ~~ suc M -> E. x ps ) |
22 |
5 21
|
sylbi |
|- ( A ~~ N -> E. x ps ) |