Metamath Proof Explorer


Theorem enp1i

Description: Proof induction for en2 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016) Generalize to all ordinals and avoid ax-pow , ax-un . (Revised by BTernaryTau, 6-Jan-2025)

Ref Expression
Hypotheses enp1i.1
|- Ord M
enp1i.2
|- N = suc M
enp1i.3
|- ( ( A \ { x } ) ~~ M -> ph )
enp1i.4
|- ( x e. A -> ( ph -> ps ) )
Assertion enp1i
|- ( A ~~ N -> E. x ps )

Proof

Step Hyp Ref Expression
1 enp1i.1
 |-  Ord M
2 enp1i.2
 |-  N = suc M
3 enp1i.3
 |-  ( ( A \ { x } ) ~~ M -> ph )
4 enp1i.4
 |-  ( x e. A -> ( ph -> ps ) )
5 2 breq2i
 |-  ( A ~~ N <-> A ~~ suc M )
6 encv
 |-  ( A ~~ suc M -> ( A e. _V /\ suc M e. _V ) )
7 6 simprd
 |-  ( A ~~ suc M -> suc M e. _V )
8 sssucid
 |-  M C_ suc M
9 ssexg
 |-  ( ( M C_ suc M /\ suc M e. _V ) -> M e. _V )
10 8 9 mpan
 |-  ( suc M e. _V -> M e. _V )
11 elong
 |-  ( M e. _V -> ( M e. On <-> Ord M ) )
12 7 10 11 3syl
 |-  ( A ~~ suc M -> ( M e. On <-> Ord M ) )
13 1 12 mpbiri
 |-  ( A ~~ suc M -> M e. On )
14 rexdif1en
 |-  ( ( M e. On /\ A ~~ suc M ) -> E. x e. A ( A \ { x } ) ~~ M )
15 13 14 mpancom
 |-  ( A ~~ suc M -> E. x e. A ( A \ { x } ) ~~ M )
16 3 reximi
 |-  ( E. x e. A ( A \ { x } ) ~~ M -> E. x e. A ph )
17 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
18 4 imp
 |-  ( ( x e. A /\ ph ) -> ps )
19 18 eximi
 |-  ( E. x ( x e. A /\ ph ) -> E. x ps )
20 17 19 sylbi
 |-  ( E. x e. A ph -> E. x ps )
21 15 16 20 3syl
 |-  ( A ~~ suc M -> E. x ps )
22 5 21 sylbi
 |-  ( A ~~ N -> E. x ps )