| Step | Hyp | Ref | Expression | 
						
							| 1 |  | enp1iOLD.1 |  |-  M e. _om | 
						
							| 2 |  | enp1iOLD.2 |  |-  N = suc M | 
						
							| 3 |  | enp1iOLD.3 |  |-  ( ( A \ { x } ) ~~ M -> ph ) | 
						
							| 4 |  | enp1iOLD.4 |  |-  ( x e. A -> ( ph -> ps ) ) | 
						
							| 5 |  | nsuceq0 |  |-  suc M =/= (/) | 
						
							| 6 |  | breq1 |  |-  ( A = (/) -> ( A ~~ N <-> (/) ~~ N ) ) | 
						
							| 7 |  | ensym |  |-  ( (/) ~~ N -> N ~~ (/) ) | 
						
							| 8 |  | en0 |  |-  ( N ~~ (/) <-> N = (/) ) | 
						
							| 9 | 7 8 | sylib |  |-  ( (/) ~~ N -> N = (/) ) | 
						
							| 10 | 2 9 | eqtr3id |  |-  ( (/) ~~ N -> suc M = (/) ) | 
						
							| 11 | 6 10 | biimtrdi |  |-  ( A = (/) -> ( A ~~ N -> suc M = (/) ) ) | 
						
							| 12 | 11 | necon3ad |  |-  ( A = (/) -> ( suc M =/= (/) -> -. A ~~ N ) ) | 
						
							| 13 | 5 12 | mpi |  |-  ( A = (/) -> -. A ~~ N ) | 
						
							| 14 | 13 | con2i |  |-  ( A ~~ N -> -. A = (/) ) | 
						
							| 15 |  | neq0 |  |-  ( -. A = (/) <-> E. x x e. A ) | 
						
							| 16 | 14 15 | sylib |  |-  ( A ~~ N -> E. x x e. A ) | 
						
							| 17 | 2 | breq2i |  |-  ( A ~~ N <-> A ~~ suc M ) | 
						
							| 18 |  | dif1ennn |  |-  ( ( M e. _om /\ A ~~ suc M /\ x e. A ) -> ( A \ { x } ) ~~ M ) | 
						
							| 19 | 1 18 | mp3an1 |  |-  ( ( A ~~ suc M /\ x e. A ) -> ( A \ { x } ) ~~ M ) | 
						
							| 20 | 19 3 | syl |  |-  ( ( A ~~ suc M /\ x e. A ) -> ph ) | 
						
							| 21 | 20 | ex |  |-  ( A ~~ suc M -> ( x e. A -> ph ) ) | 
						
							| 22 | 17 21 | sylbi |  |-  ( A ~~ N -> ( x e. A -> ph ) ) | 
						
							| 23 | 22 4 | sylcom |  |-  ( A ~~ N -> ( x e. A -> ps ) ) | 
						
							| 24 | 23 | eximdv |  |-  ( A ~~ N -> ( E. x x e. A -> E. x ps ) ) | 
						
							| 25 | 16 24 | mpd |  |-  ( A ~~ N -> E. x ps ) |