Metamath Proof Explorer


Theorem enpr2d

Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses enpr2d.1
|- ( ph -> A e. C )
enpr2d.2
|- ( ph -> B e. D )
enpr2d.3
|- ( ph -> -. A = B )
Assertion enpr2d
|- ( ph -> { A , B } ~~ 2o )

Proof

Step Hyp Ref Expression
1 enpr2d.1
 |-  ( ph -> A e. C )
2 enpr2d.2
 |-  ( ph -> B e. D )
3 enpr2d.3
 |-  ( ph -> -. A = B )
4 ensn1g
 |-  ( A e. C -> { A } ~~ 1o )
5 1 4 syl
 |-  ( ph -> { A } ~~ 1o )
6 1on
 |-  1o e. On
7 en2sn
 |-  ( ( B e. D /\ 1o e. On ) -> { B } ~~ { 1o } )
8 2 6 7 sylancl
 |-  ( ph -> { B } ~~ { 1o } )
9 3 neqned
 |-  ( ph -> A =/= B )
10 disjsn2
 |-  ( A =/= B -> ( { A } i^i { B } ) = (/) )
11 9 10 syl
 |-  ( ph -> ( { A } i^i { B } ) = (/) )
12 6 onirri
 |-  -. 1o e. 1o
13 12 a1i
 |-  ( ph -> -. 1o e. 1o )
14 disjsn
 |-  ( ( 1o i^i { 1o } ) = (/) <-> -. 1o e. 1o )
15 13 14 sylibr
 |-  ( ph -> ( 1o i^i { 1o } ) = (/) )
16 unen
 |-  ( ( ( { A } ~~ 1o /\ { B } ~~ { 1o } ) /\ ( ( { A } i^i { B } ) = (/) /\ ( 1o i^i { 1o } ) = (/) ) ) -> ( { A } u. { B } ) ~~ ( 1o u. { 1o } ) )
17 5 8 11 15 16 syl22anc
 |-  ( ph -> ( { A } u. { B } ) ~~ ( 1o u. { 1o } ) )
18 df-pr
 |-  { A , B } = ( { A } u. { B } )
19 df-suc
 |-  suc 1o = ( 1o u. { 1o } )
20 17 18 19 3brtr4g
 |-  ( ph -> { A , B } ~~ suc 1o )
21 df-2o
 |-  2o = suc 1o
22 20 21 breqtrrdi
 |-  ( ph -> { A , B } ~~ 2o )