Step |
Hyp |
Ref |
Expression |
1 |
|
enpr2d.1 |
|- ( ph -> A e. C ) |
2 |
|
enpr2d.2 |
|- ( ph -> B e. D ) |
3 |
|
enpr2d.3 |
|- ( ph -> -. A = B ) |
4 |
|
ensn1g |
|- ( A e. C -> { A } ~~ 1o ) |
5 |
1 4
|
syl |
|- ( ph -> { A } ~~ 1o ) |
6 |
|
1on |
|- 1o e. On |
7 |
|
en2sn |
|- ( ( B e. D /\ 1o e. On ) -> { B } ~~ { 1o } ) |
8 |
2 6 7
|
sylancl |
|- ( ph -> { B } ~~ { 1o } ) |
9 |
3
|
neqned |
|- ( ph -> A =/= B ) |
10 |
|
disjsn2 |
|- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |
11 |
9 10
|
syl |
|- ( ph -> ( { A } i^i { B } ) = (/) ) |
12 |
6
|
onirri |
|- -. 1o e. 1o |
13 |
12
|
a1i |
|- ( ph -> -. 1o e. 1o ) |
14 |
|
disjsn |
|- ( ( 1o i^i { 1o } ) = (/) <-> -. 1o e. 1o ) |
15 |
13 14
|
sylibr |
|- ( ph -> ( 1o i^i { 1o } ) = (/) ) |
16 |
|
unen |
|- ( ( ( { A } ~~ 1o /\ { B } ~~ { 1o } ) /\ ( ( { A } i^i { B } ) = (/) /\ ( 1o i^i { 1o } ) = (/) ) ) -> ( { A } u. { B } ) ~~ ( 1o u. { 1o } ) ) |
17 |
5 8 11 15 16
|
syl22anc |
|- ( ph -> ( { A } u. { B } ) ~~ ( 1o u. { 1o } ) ) |
18 |
|
df-pr |
|- { A , B } = ( { A } u. { B } ) |
19 |
|
df-suc |
|- suc 1o = ( 1o u. { 1o } ) |
20 |
17 18 19
|
3brtr4g |
|- ( ph -> { A , B } ~~ suc 1o ) |
21 |
|
df-2o |
|- 2o = suc 1o |
22 |
20 21
|
breqtrrdi |
|- ( ph -> { A , B } ~~ 2o ) |