Metamath Proof Explorer


Theorem enpr2d

Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023) Avoid ax-un . (Revised by BTernaryTau, 23-Dec-2024)

Ref Expression
Hypotheses enpr2d.1
|- ( ph -> A e. C )
enpr2d.2
|- ( ph -> B e. D )
enpr2d.3
|- ( ph -> -. A = B )
Assertion enpr2d
|- ( ph -> { A , B } ~~ 2o )

Proof

Step Hyp Ref Expression
1 enpr2d.1
 |-  ( ph -> A e. C )
2 enpr2d.2
 |-  ( ph -> B e. D )
3 enpr2d.3
 |-  ( ph -> -. A = B )
4 0ex
 |-  (/) e. _V
5 4 a1i
 |-  ( ph -> (/) e. _V )
6 1oex
 |-  1o e. _V
7 6 a1i
 |-  ( ph -> 1o e. _V )
8 3 neqned
 |-  ( ph -> A =/= B )
9 1n0
 |-  1o =/= (/)
10 9 necomi
 |-  (/) =/= 1o
11 10 a1i
 |-  ( ph -> (/) =/= 1o )
12 1 2 5 7 8 11 en2prd
 |-  ( ph -> { A , B } ~~ { (/) , 1o } )
13 df2o3
 |-  2o = { (/) , 1o }
14 12 13 breqtrrdi
 |-  ( ph -> { A , B } ~~ 2o )