Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023) Avoid ax-un . (Revised by BTernaryTau, 23-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | enpr2d.1 | |- ( ph -> A e. C ) |
|
enpr2d.2 | |- ( ph -> B e. D ) |
||
enpr2d.3 | |- ( ph -> -. A = B ) |
||
Assertion | enpr2d | |- ( ph -> { A , B } ~~ 2o ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enpr2d.1 | |- ( ph -> A e. C ) |
|
2 | enpr2d.2 | |- ( ph -> B e. D ) |
|
3 | enpr2d.3 | |- ( ph -> -. A = B ) |
|
4 | 0ex | |- (/) e. _V |
|
5 | 4 | a1i | |- ( ph -> (/) e. _V ) |
6 | 1oex | |- 1o e. _V |
|
7 | 6 | a1i | |- ( ph -> 1o e. _V ) |
8 | 3 | neqned | |- ( ph -> A =/= B ) |
9 | 1n0 | |- 1o =/= (/) |
|
10 | 9 | necomi | |- (/) =/= 1o |
11 | 10 | a1i | |- ( ph -> (/) =/= 1o ) |
12 | 1 2 5 7 8 11 | en2prd | |- ( ph -> { A , B } ~~ { (/) , 1o } ) |
13 | df2o3 | |- 2o = { (/) , 1o } |
|
14 | 12 13 | breqtrrdi | |- ( ph -> { A , B } ~~ 2o ) |