Description: Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | enrbreq | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( <. A , B >. ~R <. C , D >. <-> ( A +P. D ) = ( B +P. C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enr | |- ~R = { <. x , y >. | ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) ) } |
|
2 | 1 | ecopoveq | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( <. A , B >. ~R <. C , D >. <-> ( A +P. D ) = ( B +P. C ) ) ) |