Metamath Proof Explorer


Theorem enrbreq

Description: Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion enrbreq
|- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( <. A , B >. ~R <. C , D >. <-> ( A +P. D ) = ( B +P. C ) ) )

Proof

Step Hyp Ref Expression
1 df-enr
 |-  ~R = { <. x , y >. | ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) ) }
2 1 ecopoveq
 |-  ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( <. A , B >. ~R <. C , D >. <-> ( A +P. D ) = ( B +P. C ) ) )