Metamath Proof Explorer


Theorem enreffi

Description: Equinumerosity is reflexive for finite sets, proved without using the Axiom of Power Sets (unlike enrefg ). (Contributed by BTernaryTau, 8-Sep-2024)

Ref Expression
Assertion enreffi
|- ( A e. Fin -> A ~~ A )

Proof

Step Hyp Ref Expression
1 f1oi
 |-  ( _I |` A ) : A -1-1-onto-> A
2 f1oenfi
 |-  ( ( A e. Fin /\ ( _I |` A ) : A -1-1-onto-> A ) -> A ~~ A )
3 1 2 mpan2
 |-  ( A e. Fin -> A ~~ A )