Description: Equinumerosity is reflexive. Theorem 1 of Suppes p. 92. (Contributed by NM, 18-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enrefg | |- ( A e. V -> A ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | |- ( _I |` A ) : A -1-1-onto-> A |
|
| 2 | f1oen2g | |- ( ( A e. V /\ A e. V /\ ( _I |` A ) : A -1-1-onto-> A ) -> A ~~ A ) |
|
| 3 | 1 2 | mp3an3 | |- ( ( A e. V /\ A e. V ) -> A ~~ A ) |
| 4 | 3 | anidms | |- ( A e. V -> A ~~ A ) |