Metamath Proof Explorer


Theorem enrefnn

Description: Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg ). (Contributed by BTernaryTau, 31-Jul-2024)

Ref Expression
Assertion enrefnn
|- ( A e. _om -> A ~~ A )

Proof

Step Hyp Ref Expression
1 id
 |-  ( x = (/) -> x = (/) )
2 1 1 breq12d
 |-  ( x = (/) -> ( x ~~ x <-> (/) ~~ (/) ) )
3 id
 |-  ( x = y -> x = y )
4 3 3 breq12d
 |-  ( x = y -> ( x ~~ x <-> y ~~ y ) )
5 id
 |-  ( x = suc y -> x = suc y )
6 5 5 breq12d
 |-  ( x = suc y -> ( x ~~ x <-> suc y ~~ suc y ) )
7 id
 |-  ( x = A -> x = A )
8 7 7 breq12d
 |-  ( x = A -> ( x ~~ x <-> A ~~ A ) )
9 eqid
 |-  (/) = (/)
10 en0
 |-  ( (/) ~~ (/) <-> (/) = (/) )
11 9 10 mpbir
 |-  (/) ~~ (/)
12 en2sn
 |-  ( ( y e. _V /\ y e. _V ) -> { y } ~~ { y } )
13 12 el2v
 |-  { y } ~~ { y }
14 13 jctr
 |-  ( y ~~ y -> ( y ~~ y /\ { y } ~~ { y } ) )
15 nnord
 |-  ( y e. _om -> Ord y )
16 orddisj
 |-  ( Ord y -> ( y i^i { y } ) = (/) )
17 15 16 syl
 |-  ( y e. _om -> ( y i^i { y } ) = (/) )
18 17 17 jca
 |-  ( y e. _om -> ( ( y i^i { y } ) = (/) /\ ( y i^i { y } ) = (/) ) )
19 unen
 |-  ( ( ( y ~~ y /\ { y } ~~ { y } ) /\ ( ( y i^i { y } ) = (/) /\ ( y i^i { y } ) = (/) ) ) -> ( y u. { y } ) ~~ ( y u. { y } ) )
20 14 18 19 syl2anr
 |-  ( ( y e. _om /\ y ~~ y ) -> ( y u. { y } ) ~~ ( y u. { y } ) )
21 df-suc
 |-  suc y = ( y u. { y } )
22 20 21 21 3brtr4g
 |-  ( ( y e. _om /\ y ~~ y ) -> suc y ~~ suc y )
23 22 ex
 |-  ( y e. _om -> ( y ~~ y -> suc y ~~ suc y ) )
24 2 4 6 8 11 23 finds
 |-  ( A e. _om -> A ~~ A )