Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of Gleason p. 126. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 6-Jul-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | enrer | |- ~R Er ( P. X. P. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enr | |- ~R = { <. x , y >. | ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) ) } |
|
2 | addcompr | |- ( x +P. y ) = ( y +P. x ) |
|
3 | addclpr | |- ( ( x e. P. /\ y e. P. ) -> ( x +P. y ) e. P. ) |
|
4 | addasspr | |- ( ( x +P. y ) +P. z ) = ( x +P. ( y +P. z ) ) |
|
5 | addcanpr | |- ( ( x e. P. /\ y e. P. ) -> ( ( x +P. y ) = ( x +P. z ) -> y = z ) ) |
|
6 | 1 2 3 4 5 | ecopover | |- ~R Er ( P. X. P. ) |