Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | ensn1g | |- ( A e. V -> { A } ~~ 1o ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq | |- ( x = A -> { x } = { A } ) |
|
2 | 1 | breq1d | |- ( x = A -> ( { x } ~~ 1o <-> { A } ~~ 1o ) ) |
3 | vex | |- x e. _V |
|
4 | 3 | ensn1 | |- { x } ~~ 1o |
5 | 2 4 | vtoclg | |- ( A e. V -> { A } ~~ 1o ) |