| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bren |
|- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |
| 2 |
|
19.42v |
|- ( E. f ( A e. Fin /\ f : A -1-1-onto-> B ) <-> ( A e. Fin /\ E. f f : A -1-1-onto-> B ) ) |
| 3 |
|
f1ocnv |
|- ( f : A -1-1-onto-> B -> `' f : B -1-1-onto-> A ) |
| 4 |
|
f1oenfirn |
|- ( ( A e. Fin /\ `' f : B -1-1-onto-> A ) -> B ~~ A ) |
| 5 |
3 4
|
sylan2 |
|- ( ( A e. Fin /\ f : A -1-1-onto-> B ) -> B ~~ A ) |
| 6 |
5
|
exlimiv |
|- ( E. f ( A e. Fin /\ f : A -1-1-onto-> B ) -> B ~~ A ) |
| 7 |
2 6
|
sylbir |
|- ( ( A e. Fin /\ E. f f : A -1-1-onto-> B ) -> B ~~ A ) |
| 8 |
1 7
|
sylan2b |
|- ( ( A e. Fin /\ A ~~ B ) -> B ~~ A ) |
| 9 |
|
bren |
|- ( B ~~ A <-> E. g g : B -1-1-onto-> A ) |
| 10 |
|
19.42v |
|- ( E. g ( A e. Fin /\ g : B -1-1-onto-> A ) <-> ( A e. Fin /\ E. g g : B -1-1-onto-> A ) ) |
| 11 |
|
f1ocnv |
|- ( g : B -1-1-onto-> A -> `' g : A -1-1-onto-> B ) |
| 12 |
|
f1oenfi |
|- ( ( A e. Fin /\ `' g : A -1-1-onto-> B ) -> A ~~ B ) |
| 13 |
11 12
|
sylan2 |
|- ( ( A e. Fin /\ g : B -1-1-onto-> A ) -> A ~~ B ) |
| 14 |
13
|
exlimiv |
|- ( E. g ( A e. Fin /\ g : B -1-1-onto-> A ) -> A ~~ B ) |
| 15 |
10 14
|
sylbir |
|- ( ( A e. Fin /\ E. g g : B -1-1-onto-> A ) -> A ~~ B ) |
| 16 |
9 15
|
sylan2b |
|- ( ( A e. Fin /\ B ~~ A ) -> A ~~ B ) |
| 17 |
8 16
|
impbida |
|- ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) |