Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
|- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |
2 |
|
19.42v |
|- ( E. f ( A e. Fin /\ f : A -1-1-onto-> B ) <-> ( A e. Fin /\ E. f f : A -1-1-onto-> B ) ) |
3 |
|
f1ocnv |
|- ( f : A -1-1-onto-> B -> `' f : B -1-1-onto-> A ) |
4 |
|
f1oenfirn |
|- ( ( A e. Fin /\ `' f : B -1-1-onto-> A ) -> B ~~ A ) |
5 |
3 4
|
sylan2 |
|- ( ( A e. Fin /\ f : A -1-1-onto-> B ) -> B ~~ A ) |
6 |
5
|
exlimiv |
|- ( E. f ( A e. Fin /\ f : A -1-1-onto-> B ) -> B ~~ A ) |
7 |
2 6
|
sylbir |
|- ( ( A e. Fin /\ E. f f : A -1-1-onto-> B ) -> B ~~ A ) |
8 |
1 7
|
sylan2b |
|- ( ( A e. Fin /\ A ~~ B ) -> B ~~ A ) |
9 |
|
bren |
|- ( B ~~ A <-> E. g g : B -1-1-onto-> A ) |
10 |
|
19.42v |
|- ( E. g ( A e. Fin /\ g : B -1-1-onto-> A ) <-> ( A e. Fin /\ E. g g : B -1-1-onto-> A ) ) |
11 |
|
f1ocnv |
|- ( g : B -1-1-onto-> A -> `' g : A -1-1-onto-> B ) |
12 |
|
f1oenfi |
|- ( ( A e. Fin /\ `' g : A -1-1-onto-> B ) -> A ~~ B ) |
13 |
11 12
|
sylan2 |
|- ( ( A e. Fin /\ g : B -1-1-onto-> A ) -> A ~~ B ) |
14 |
13
|
exlimiv |
|- ( E. g ( A e. Fin /\ g : B -1-1-onto-> A ) -> A ~~ B ) |
15 |
10 14
|
sylbir |
|- ( ( A e. Fin /\ E. g g : B -1-1-onto-> A ) -> A ~~ B ) |
16 |
9 15
|
sylan2b |
|- ( ( A e. Fin /\ B ~~ A ) -> A ~~ B ) |
17 |
8 16
|
impbida |
|- ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) |