Metamath Proof Explorer


Theorem entr2i

Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004)

Ref Expression
Hypotheses entr2i.1
|- A ~~ B
entr2i.2
|- B ~~ C
Assertion entr2i
|- C ~~ A

Proof

Step Hyp Ref Expression
1 entr2i.1
 |-  A ~~ B
2 entr2i.2
 |-  B ~~ C
3 1 2 entri
 |-  A ~~ C
4 3 ensymi
 |-  C ~~ A