Metamath Proof Explorer


Theorem entrfir

Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr ). (Contributed by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion entrfir
|- ( ( C e. Fin /\ A ~~ B /\ B ~~ C ) -> A ~~ C )

Proof

Step Hyp Ref Expression
1 enfii
 |-  ( ( C e. Fin /\ B ~~ C ) -> B e. Fin )
2 1 3adant2
 |-  ( ( C e. Fin /\ A ~~ B /\ B ~~ C ) -> B e. Fin )
3 entrfi
 |-  ( ( B e. Fin /\ A ~~ B /\ B ~~ C ) -> A ~~ C )
4 2 3 syld3an1
 |-  ( ( C e. Fin /\ A ~~ B /\ B ~~ C ) -> A ~~ C )