Description: Trichotomy of dominance and strict dominance. (Contributed by NM, 4-Jan-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | entri2 | |- ( ( A e. V /\ B e. W ) -> ( A ~<_ B \/ B ~< A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | entric | |- ( ( A e. V /\ B e. W ) -> ( A ~< B \/ A ~~ B \/ B ~< A ) ) |
|
2 | brdom2 | |- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
|
3 | 2 | orbi1i | |- ( ( A ~<_ B \/ B ~< A ) <-> ( ( A ~< B \/ A ~~ B ) \/ B ~< A ) ) |
4 | df-3or | |- ( ( A ~< B \/ A ~~ B \/ B ~< A ) <-> ( ( A ~< B \/ A ~~ B ) \/ B ~< A ) ) |
|
5 | 3 4 | bitr4i | |- ( ( A ~<_ B \/ B ~< A ) <-> ( A ~< B \/ A ~~ B \/ B ~< A ) ) |
6 | 1 5 | sylibr | |- ( ( A e. V /\ B e. W ) -> ( A ~<_ B \/ B ~< A ) ) |