Metamath Proof Explorer


Theorem entri2

Description: Trichotomy of dominance and strict dominance. (Contributed by NM, 4-Jan-2004)

Ref Expression
Assertion entri2
|- ( ( A e. V /\ B e. W ) -> ( A ~<_ B \/ B ~< A ) )

Proof

Step Hyp Ref Expression
1 entric
 |-  ( ( A e. V /\ B e. W ) -> ( A ~< B \/ A ~~ B \/ B ~< A ) )
2 brdom2
 |-  ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) )
3 2 orbi1i
 |-  ( ( A ~<_ B \/ B ~< A ) <-> ( ( A ~< B \/ A ~~ B ) \/ B ~< A ) )
4 df-3or
 |-  ( ( A ~< B \/ A ~~ B \/ B ~< A ) <-> ( ( A ~< B \/ A ~~ B ) \/ B ~< A ) )
5 3 4 bitr4i
 |-  ( ( A ~<_ B \/ B ~< A ) <-> ( A ~< B \/ A ~~ B \/ B ~< A ) )
6 1 5 sylibr
 |-  ( ( A e. V /\ B e. W ) -> ( A ~<_ B \/ B ~< A ) )