Metamath Proof Explorer


Theorem entri3

Description: Trichotomy of dominance. This theorem is equivalent to the Axiom of Choice. Part of Proposition 4.42(d) of Mendelson p. 275. (Contributed by NM, 4-Jan-2004)

Ref Expression
Assertion entri3
|- ( ( A e. V /\ B e. W ) -> ( A ~<_ B \/ B ~<_ A ) )

Proof

Step Hyp Ref Expression
1 entri2
 |-  ( ( A e. V /\ B e. W ) -> ( A ~<_ B \/ B ~< A ) )
2 sdomdom
 |-  ( B ~< A -> B ~<_ A )
3 2 orim2i
 |-  ( ( A ~<_ B \/ B ~< A ) -> ( A ~<_ B \/ B ~<_ A ) )
4 1 3 syl
 |-  ( ( A e. V /\ B e. W ) -> ( A ~<_ B \/ B ~<_ A ) )