Description: Trichotomy of dominance. This theorem is equivalent to the Axiom of Choice. Part of Proposition 4.42(d) of Mendelson p. 275. (Contributed by NM, 4-Jan-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | entri3 | |- ( ( A e. V /\ B e. W ) -> ( A ~<_ B \/ B ~<_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | entri2 | |- ( ( A e. V /\ B e. W ) -> ( A ~<_ B \/ B ~< A ) ) |
|
2 | sdomdom | |- ( B ~< A -> B ~<_ A ) |
|
3 | 2 | orim2i | |- ( ( A ~<_ B \/ B ~< A ) -> ( A ~<_ B \/ B ~<_ A ) ) |
4 | 1 3 | syl | |- ( ( A e. V /\ B e. W ) -> ( A ~<_ B \/ B ~<_ A ) ) |