| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domtri |
|- ( ( A e. V /\ B e. W ) -> ( A ~<_ B <-> -. B ~< A ) ) |
| 2 |
1
|
biimprd |
|- ( ( A e. V /\ B e. W ) -> ( -. B ~< A -> A ~<_ B ) ) |
| 3 |
|
brdom2 |
|- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
| 4 |
2 3
|
imbitrdi |
|- ( ( A e. V /\ B e. W ) -> ( -. B ~< A -> ( A ~< B \/ A ~~ B ) ) ) |
| 5 |
4
|
con1d |
|- ( ( A e. V /\ B e. W ) -> ( -. ( A ~< B \/ A ~~ B ) -> B ~< A ) ) |
| 6 |
5
|
orrd |
|- ( ( A e. V /\ B e. W ) -> ( ( A ~< B \/ A ~~ B ) \/ B ~< A ) ) |
| 7 |
|
df-3or |
|- ( ( A ~< B \/ A ~~ B \/ B ~< A ) <-> ( ( A ~< B \/ A ~~ B ) \/ B ~< A ) ) |
| 8 |
6 7
|
sylibr |
|- ( ( A e. V /\ B e. W ) -> ( A ~< B \/ A ~~ B \/ B ~< A ) ) |