Step |
Hyp |
Ref |
Expression |
1 |
|
domtri |
|- ( ( A e. V /\ B e. W ) -> ( A ~<_ B <-> -. B ~< A ) ) |
2 |
1
|
biimprd |
|- ( ( A e. V /\ B e. W ) -> ( -. B ~< A -> A ~<_ B ) ) |
3 |
|
brdom2 |
|- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
4 |
2 3
|
syl6ib |
|- ( ( A e. V /\ B e. W ) -> ( -. B ~< A -> ( A ~< B \/ A ~~ B ) ) ) |
5 |
4
|
con1d |
|- ( ( A e. V /\ B e. W ) -> ( -. ( A ~< B \/ A ~~ B ) -> B ~< A ) ) |
6 |
5
|
orrd |
|- ( ( A e. V /\ B e. W ) -> ( ( A ~< B \/ A ~~ B ) \/ B ~< A ) ) |
7 |
|
df-3or |
|- ( ( A ~< B \/ A ~~ B \/ B ~< A ) <-> ( ( A ~< B \/ A ~~ B ) \/ B ~< A ) ) |
8 |
6 7
|
sylibr |
|- ( ( A e. V /\ B e. W ) -> ( A ~< B \/ A ~~ B \/ B ~< A ) ) |