Step |
Hyp |
Ref |
Expression |
1 |
|
evenp1odd |
|- ( A e. Even -> ( A + 1 ) e. Odd ) |
2 |
|
evenm1odd |
|- ( B e. Even -> ( B - 1 ) e. Odd ) |
3 |
|
opoeALTV |
|- ( ( ( A + 1 ) e. Odd /\ ( B - 1 ) e. Odd ) -> ( ( A + 1 ) + ( B - 1 ) ) e. Even ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. Even /\ B e. Even ) -> ( ( A + 1 ) + ( B - 1 ) ) e. Even ) |
5 |
|
evenz |
|- ( A e. Even -> A e. ZZ ) |
6 |
5
|
zcnd |
|- ( A e. Even -> A e. CC ) |
7 |
6
|
adantr |
|- ( ( A e. Even /\ B e. Even ) -> A e. CC ) |
8 |
|
1cnd |
|- ( ( A e. Even /\ B e. Even ) -> 1 e. CC ) |
9 |
|
evenz |
|- ( B e. Even -> B e. ZZ ) |
10 |
9
|
zcnd |
|- ( B e. Even -> B e. CC ) |
11 |
10
|
adantl |
|- ( ( A e. Even /\ B e. Even ) -> B e. CC ) |
12 |
|
ppncan |
|- ( ( A e. CC /\ 1 e. CC /\ B e. CC ) -> ( ( A + 1 ) + ( B - 1 ) ) = ( A + B ) ) |
13 |
12
|
eleq1d |
|- ( ( A e. CC /\ 1 e. CC /\ B e. CC ) -> ( ( ( A + 1 ) + ( B - 1 ) ) e. Even <-> ( A + B ) e. Even ) ) |
14 |
7 8 11 13
|
syl3anc |
|- ( ( A e. Even /\ B e. Even ) -> ( ( ( A + 1 ) + ( B - 1 ) ) e. Even <-> ( A + B ) e. Even ) ) |
15 |
4 14
|
mpbid |
|- ( ( A e. Even /\ B e. Even ) -> ( A + B ) e. Even ) |