| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-br |  |-  ( A _E B <-> <. A , B >. e. _E ) | 
						
							| 2 |  | 0nelopab |  |-  -. (/) e. { <. x , y >. | x e. y } | 
						
							| 3 |  | df-eprel |  |-  _E = { <. x , y >. | x e. y } | 
						
							| 4 | 3 | eqcomi |  |-  { <. x , y >. | x e. y } = _E | 
						
							| 5 | 4 | eleq2i |  |-  ( (/) e. { <. x , y >. | x e. y } <-> (/) e. _E ) | 
						
							| 6 | 2 5 | mtbi |  |-  -. (/) e. _E | 
						
							| 7 |  | eleq1 |  |-  ( <. A , B >. = (/) -> ( <. A , B >. e. _E <-> (/) e. _E ) ) | 
						
							| 8 | 6 7 | mtbiri |  |-  ( <. A , B >. = (/) -> -. <. A , B >. e. _E ) | 
						
							| 9 | 8 | con2i |  |-  ( <. A , B >. e. _E -> -. <. A , B >. = (/) ) | 
						
							| 10 |  | opprc1 |  |-  ( -. A e. _V -> <. A , B >. = (/) ) | 
						
							| 11 | 9 10 | nsyl2 |  |-  ( <. A , B >. e. _E -> A e. _V ) | 
						
							| 12 | 1 11 | sylbi |  |-  ( A _E B -> A e. _V ) | 
						
							| 13 | 12 | a1i |  |-  ( B e. V -> ( A _E B -> A e. _V ) ) | 
						
							| 14 |  | elex |  |-  ( A e. B -> A e. _V ) | 
						
							| 15 | 14 | a1i |  |-  ( B e. V -> ( A e. B -> A e. _V ) ) | 
						
							| 16 |  | eleq12 |  |-  ( ( x = A /\ y = B ) -> ( x e. y <-> A e. B ) ) | 
						
							| 17 | 16 3 | brabga |  |-  ( ( A e. _V /\ B e. V ) -> ( A _E B <-> A e. B ) ) | 
						
							| 18 | 17 | expcom |  |-  ( B e. V -> ( A e. _V -> ( A _E B <-> A e. B ) ) ) | 
						
							| 19 | 13 15 18 | pm5.21ndd |  |-  ( B e. V -> ( A _E B <-> A e. B ) ) |