Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg . (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | epeli.1 | |- B e. _V |
|
| Assertion | epeli | |- ( A _E B <-> A e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epeli.1 | |- B e. _V |
|
| 2 | epelg | |- ( B e. _V -> ( A _E B <-> A e. B ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A _E B <-> A e. B ) |