Description: An epimorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isepi.b | |- B = ( Base ` C ) |
|
| isepi.h | |- H = ( Hom ` C ) |
||
| isepi.o | |- .x. = ( comp ` C ) |
||
| isepi.e | |- E = ( Epi ` C ) |
||
| isepi.c | |- ( ph -> C e. Cat ) |
||
| isepi.x | |- ( ph -> X e. B ) |
||
| isepi.y | |- ( ph -> Y e. B ) |
||
| Assertion | epihom | |- ( ph -> ( X E Y ) C_ ( X H Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isepi.b | |- B = ( Base ` C ) |
|
| 2 | isepi.h | |- H = ( Hom ` C ) |
|
| 3 | isepi.o | |- .x. = ( comp ` C ) |
|
| 4 | isepi.e | |- E = ( Epi ` C ) |
|
| 5 | isepi.c | |- ( ph -> C e. Cat ) |
|
| 6 | isepi.x | |- ( ph -> X e. B ) |
|
| 7 | isepi.y | |- ( ph -> Y e. B ) |
|
| 8 | 1 2 3 4 5 6 7 | isepi | |- ( ph -> ( f e. ( X E Y ) <-> ( f e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( Y H z ) |-> ( g ( <. X , Y >. .x. z ) f ) ) ) ) ) |
| 9 | simpl | |- ( ( f e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( Y H z ) |-> ( g ( <. X , Y >. .x. z ) f ) ) ) -> f e. ( X H Y ) ) |
|
| 10 | 8 9 | biimtrdi | |- ( ph -> ( f e. ( X E Y ) -> f e. ( X H Y ) ) ) |
| 11 | 10 | ssrdv | |- ( ph -> ( X E Y ) C_ ( X H Y ) ) |