| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isepi.b |
|- B = ( Base ` C ) |
| 2 |
|
isepi.h |
|- H = ( Hom ` C ) |
| 3 |
|
isepi.o |
|- .x. = ( comp ` C ) |
| 4 |
|
isepi.e |
|- E = ( Epi ` C ) |
| 5 |
|
isepi.c |
|- ( ph -> C e. Cat ) |
| 6 |
|
isepi.x |
|- ( ph -> X e. B ) |
| 7 |
|
isepi.y |
|- ( ph -> Y e. B ) |
| 8 |
|
epii.z |
|- ( ph -> Z e. B ) |
| 9 |
|
epii.f |
|- ( ph -> F e. ( X E Y ) ) |
| 10 |
|
epii.g |
|- ( ph -> G e. ( Y H Z ) ) |
| 11 |
|
epii.k |
|- ( ph -> K e. ( Y H Z ) ) |
| 12 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
| 13 |
1 3 12 8 7 6
|
oppcco |
|- ( ph -> ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) G ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
| 14 |
1 3 12 8 7 6
|
oppcco |
|- ( ph -> ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) K ) = ( K ( <. X , Y >. .x. Z ) F ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( ph -> ( ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) G ) = ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) K ) <-> ( G ( <. X , Y >. .x. Z ) F ) = ( K ( <. X , Y >. .x. Z ) F ) ) ) |
| 16 |
12 1
|
oppcbas |
|- B = ( Base ` ( oppCat ` C ) ) |
| 17 |
|
eqid |
|- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
| 18 |
|
eqid |
|- ( comp ` ( oppCat ` C ) ) = ( comp ` ( oppCat ` C ) ) |
| 19 |
|
eqid |
|- ( Mono ` ( oppCat ` C ) ) = ( Mono ` ( oppCat ` C ) ) |
| 20 |
12
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 21 |
5 20
|
syl |
|- ( ph -> ( oppCat ` C ) e. Cat ) |
| 22 |
12 5 19 4
|
oppcmon |
|- ( ph -> ( Y ( Mono ` ( oppCat ` C ) ) X ) = ( X E Y ) ) |
| 23 |
9 22
|
eleqtrrd |
|- ( ph -> F e. ( Y ( Mono ` ( oppCat ` C ) ) X ) ) |
| 24 |
2 12
|
oppchom |
|- ( Z ( Hom ` ( oppCat ` C ) ) Y ) = ( Y H Z ) |
| 25 |
10 24
|
eleqtrrdi |
|- ( ph -> G e. ( Z ( Hom ` ( oppCat ` C ) ) Y ) ) |
| 26 |
11 24
|
eleqtrrdi |
|- ( ph -> K e. ( Z ( Hom ` ( oppCat ` C ) ) Y ) ) |
| 27 |
16 17 18 19 21 7 6 8 23 25 26
|
moni |
|- ( ph -> ( ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) G ) = ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) K ) <-> G = K ) ) |
| 28 |
15 27
|
bitr3d |
|- ( ph -> ( ( G ( <. X , Y >. .x. Z ) F ) = ( K ( <. X , Y >. .x. Z ) F ) <-> G = K ) ) |