Metamath Proof Explorer


Theorem epini

Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013)

Ref Expression
Hypothesis epini.1
|- A e. _V
Assertion epini
|- ( `' _E " { A } ) = A

Proof

Step Hyp Ref Expression
1 epini.1
 |-  A e. _V
2 vex
 |-  x e. _V
3 2 eliniseg
 |-  ( A e. _V -> ( x e. ( `' _E " { A } ) <-> x _E A ) )
4 1 3 ax-mp
 |-  ( x e. ( `' _E " { A } ) <-> x _E A )
5 1 epeli
 |-  ( x _E A <-> x e. A )
6 4 5 bitri
 |-  ( x e. ( `' _E " { A } ) <-> x e. A )
7 6 eqriv
 |-  ( `' _E " { A } ) = A