Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | epini.1 | |- A e. _V |
|
| Assertion | epini | |- ( `' _E " { A } ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epini.1 | |- A e. _V |
|
| 2 | epin | |- ( A e. _V -> ( `' _E " { A } ) = A ) |
|
| 3 | 1 2 | ax-mp | |- ( `' _E " { A } ) = A |