| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sectepi.b |
|- B = ( Base ` C ) |
| 2 |
|
sectepi.e |
|- E = ( Epi ` C ) |
| 3 |
|
sectepi.s |
|- S = ( Sect ` C ) |
| 4 |
|
sectepi.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
sectepi.x |
|- ( ph -> X e. B ) |
| 6 |
|
sectepi.y |
|- ( ph -> Y e. B ) |
| 7 |
|
episect.n |
|- N = ( Inv ` C ) |
| 8 |
|
episect.1 |
|- ( ph -> F e. ( X E Y ) ) |
| 9 |
|
episect.2 |
|- ( ph -> F ( X S Y ) G ) |
| 10 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
| 11 |
|
eqid |
|- ( Inv ` ( oppCat ` C ) ) = ( Inv ` ( oppCat ` C ) ) |
| 12 |
1 10 4 6 5 7 11
|
oppcinv |
|- ( ph -> ( Y ( Inv ` ( oppCat ` C ) ) X ) = ( X N Y ) ) |
| 13 |
10 1
|
oppcbas |
|- B = ( Base ` ( oppCat ` C ) ) |
| 14 |
|
eqid |
|- ( Mono ` ( oppCat ` C ) ) = ( Mono ` ( oppCat ` C ) ) |
| 15 |
|
eqid |
|- ( Sect ` ( oppCat ` C ) ) = ( Sect ` ( oppCat ` C ) ) |
| 16 |
10
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 17 |
4 16
|
syl |
|- ( ph -> ( oppCat ` C ) e. Cat ) |
| 18 |
10 4 14 2
|
oppcmon |
|- ( ph -> ( Y ( Mono ` ( oppCat ` C ) ) X ) = ( X E Y ) ) |
| 19 |
8 18
|
eleqtrrd |
|- ( ph -> F e. ( Y ( Mono ` ( oppCat ` C ) ) X ) ) |
| 20 |
1 10 4 5 6 3 15
|
oppcsect |
|- ( ph -> ( G ( X ( Sect ` ( oppCat ` C ) ) Y ) F <-> F ( X S Y ) G ) ) |
| 21 |
9 20
|
mpbird |
|- ( ph -> G ( X ( Sect ` ( oppCat ` C ) ) Y ) F ) |
| 22 |
13 14 15 17 6 5 11 19 21
|
monsect |
|- ( ph -> F ( Y ( Inv ` ( oppCat ` C ) ) X ) G ) |
| 23 |
12 22
|
breqdi |
|- ( ph -> F ( X N Y ) G ) |