| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnvepnep |  |-  ( `' _E i^i _E ) = (/) | 
						
							| 2 |  | disjeq0 |  |-  ( ( `' _E i^i _E ) = (/) -> ( `' _E = _E <-> ( `' _E = (/) /\ _E = (/) ) ) ) | 
						
							| 3 |  | epn0 |  |-  _E =/= (/) | 
						
							| 4 |  | eqneqall |  |-  ( _E = (/) -> ( _E =/= (/) -> `' _E =/= _E ) ) | 
						
							| 5 | 3 4 | mpi |  |-  ( _E = (/) -> `' _E =/= _E ) | 
						
							| 6 | 5 | adantl |  |-  ( ( `' _E = (/) /\ _E = (/) ) -> `' _E =/= _E ) | 
						
							| 7 | 6 | a1i |  |-  ( `' _E = _E -> ( ( `' _E = (/) /\ _E = (/) ) -> `' _E =/= _E ) ) | 
						
							| 8 |  | neqne |  |-  ( -. `' _E = _E -> `' _E =/= _E ) | 
						
							| 9 | 8 | a1d |  |-  ( -. `' _E = _E -> ( -. ( `' _E = (/) /\ _E = (/) ) -> `' _E =/= _E ) ) | 
						
							| 10 | 7 9 | bija |  |-  ( ( `' _E = _E <-> ( `' _E = (/) /\ _E = (/) ) ) -> `' _E =/= _E ) | 
						
							| 11 | 1 2 10 | mp2b |  |-  `' _E =/= _E |