Metamath Proof Explorer


Theorem epweon

Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of Mendelson p. 244. (Contributed by NM, 1-Nov-2003)

Ref Expression
Assertion epweon
|- _E We On

Proof

Step Hyp Ref Expression
1 onfr
 |-  _E Fr On
2 eloni
 |-  ( x e. On -> Ord x )
3 eloni
 |-  ( y e. On -> Ord y )
4 ordtri3or
 |-  ( ( Ord x /\ Ord y ) -> ( x e. y \/ x = y \/ y e. x ) )
5 epel
 |-  ( x _E y <-> x e. y )
6 biid
 |-  ( x = y <-> x = y )
7 epel
 |-  ( y _E x <-> y e. x )
8 5 6 7 3orbi123i
 |-  ( ( x _E y \/ x = y \/ y _E x ) <-> ( x e. y \/ x = y \/ y e. x ) )
9 4 8 sylibr
 |-  ( ( Ord x /\ Ord y ) -> ( x _E y \/ x = y \/ y _E x ) )
10 2 3 9 syl2an
 |-  ( ( x e. On /\ y e. On ) -> ( x _E y \/ x = y \/ y _E x ) )
11 10 rgen2
 |-  A. x e. On A. y e. On ( x _E y \/ x = y \/ y _E x )
12 dfwe2
 |-  ( _E We On <-> ( _E Fr On /\ A. x e. On A. y e. On ( x _E y \/ x = y \/ y _E x ) ) )
13 1 11 12 mpbir2an
 |-  _E We On