Step |
Hyp |
Ref |
Expression |
1 |
|
onfr |
|- _E Fr On |
2 |
|
eloni |
|- ( x e. On -> Ord x ) |
3 |
|
eloni |
|- ( y e. On -> Ord y ) |
4 |
|
ordtri3or |
|- ( ( Ord x /\ Ord y ) -> ( x e. y \/ x = y \/ y e. x ) ) |
5 |
|
epel |
|- ( x _E y <-> x e. y ) |
6 |
|
biid |
|- ( x = y <-> x = y ) |
7 |
|
epel |
|- ( y _E x <-> y e. x ) |
8 |
5 6 7
|
3orbi123i |
|- ( ( x _E y \/ x = y \/ y _E x ) <-> ( x e. y \/ x = y \/ y e. x ) ) |
9 |
4 8
|
sylibr |
|- ( ( Ord x /\ Ord y ) -> ( x _E y \/ x = y \/ y _E x ) ) |
10 |
2 3 9
|
syl2an |
|- ( ( x e. On /\ y e. On ) -> ( x _E y \/ x = y \/ y _E x ) ) |
11 |
10
|
rgen2 |
|- A. x e. On A. y e. On ( x _E y \/ x = y \/ y _E x ) |
12 |
|
dfwe2 |
|- ( _E We On <-> ( _E Fr On /\ A. x e. On A. y e. On ( x _E y \/ x = y \/ y _E x ) ) ) |
13 |
1 11 12
|
mpbir2an |
|- _E We On |