Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by GG and Steven Nguyen, 28-Jun-2024) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eq0 | |- ( A = (/) <-> A. x -. x e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnul4 | |- (/) = { y | F. } |
|
| 2 | 1 | eqeq2i | |- ( A = (/) <-> A = { y | F. } ) |
| 3 | biidd | |- ( y = x -> ( F. <-> F. ) ) |
|
| 4 | 3 | eqabbw | |- ( A = { y | F. } <-> A. x ( x e. A <-> F. ) ) |
| 5 | nbfal | |- ( -. x e. A <-> ( x e. A <-> F. ) ) |
|
| 6 | 5 | albii | |- ( A. x -. x e. A <-> A. x ( x e. A <-> F. ) ) |
| 7 | 4 6 | bitr4i | |- ( A = { y | F. } <-> A. x -. x e. A ) |
| 8 | 2 7 | bitri | |- ( A = (/) <-> A. x -. x e. A ) |