Metamath Proof Explorer


Theorem eq0

Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by GG and Steven Nguyen, 28-Jun-2024) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)

Ref Expression
Assertion eq0
|- ( A = (/) <-> A. x -. x e. A )

Proof

Step Hyp Ref Expression
1 dfnul4
 |-  (/) = { y | F. }
2 1 eqeq2i
 |-  ( A = (/) <-> A = { y | F. } )
3 biidd
 |-  ( y = x -> ( F. <-> F. ) )
4 3 eqabbw
 |-  ( A = { y | F. } <-> A. x ( x e. A <-> F. ) )
5 nbfal
 |-  ( -. x e. A <-> ( x e. A <-> F. ) )
6 5 albii
 |-  ( A. x -. x e. A <-> A. x ( x e. A <-> F. ) )
7 4 6 bitr4i
 |-  ( A = { y | F. } <-> A. x -. x e. A )
8 2 7 bitri
 |-  ( A = (/) <-> A. x -. x e. A )