Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by BJ, 15-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eq0f.1 | |- F/_ x A |
|
| Assertion | eq0f | |- ( A = (/) <-> A. x -. x e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0f.1 | |- F/_ x A |
|
| 2 | nfcv | |- F/_ x (/) |
|
| 3 | 1 2 | cleqf | |- ( A = (/) <-> A. x ( x e. A <-> x e. (/) ) ) |
| 4 | noel | |- -. x e. (/) |
|
| 5 | 4 | nbn | |- ( -. x e. A <-> ( x e. A <-> x e. (/) ) ) |
| 6 | 5 | albii | |- ( A. x -. x e. A <-> A. x ( x e. A <-> x e. (/) ) ) |
| 7 | 3 6 | bitr4i | |- ( A = (/) <-> A. x -. x e. A ) |