Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eq0rdv.1 | |- ( ph -> -. x e. A ) |
|
| Assertion | eq0rdv | |- ( ph -> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0rdv.1 | |- ( ph -> -. x e. A ) |
|
| 2 | 1 | alrimiv | |- ( ph -> A. x -. x e. A ) |
| 3 | biidd | |- ( y = x -> ( F. <-> F. ) ) |
|
| 4 | 3 | eqabbw | |- ( A = { y | F. } <-> A. x ( x e. A <-> F. ) ) |
| 5 | dfnul4 | |- (/) = { y | F. } |
|
| 6 | 5 | eqeq2i | |- ( A = (/) <-> A = { y | F. } ) |
| 7 | nbfal | |- ( -. x e. A <-> ( x e. A <-> F. ) ) |
|
| 8 | 7 | albii | |- ( A. x -. x e. A <-> A. x ( x e. A <-> F. ) ) |
| 9 | 4 6 8 | 3bitr4ri | |- ( A. x -. x e. A <-> A = (/) ) |
| 10 | 2 9 | sylib | |- ( ph -> A = (/) ) |