Metamath Proof Explorer


Theorem eq0rdv

Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)

Ref Expression
Hypothesis eq0rdv.1
|- ( ph -> -. x e. A )
Assertion eq0rdv
|- ( ph -> A = (/) )

Proof

Step Hyp Ref Expression
1 eq0rdv.1
 |-  ( ph -> -. x e. A )
2 1 alrimiv
 |-  ( ph -> A. x -. x e. A )
3 biidd
 |-  ( y = x -> ( F. <-> F. ) )
4 3 eqabbw
 |-  ( A = { y | F. } <-> A. x ( x e. A <-> F. ) )
5 dfnul4
 |-  (/) = { y | F. }
6 5 eqeq2i
 |-  ( A = (/) <-> A = { y | F. } )
7 nbfal
 |-  ( -. x e. A <-> ( x e. A <-> F. ) )
8 7 albii
 |-  ( A. x -. x e. A <-> A. x ( x e. A <-> F. ) )
9 4 6 8 3bitr4ri
 |-  ( A. x -. x e. A <-> A = (/) )
10 2 9 sylib
 |-  ( ph -> A = (/) )