Metamath Proof Explorer


Theorem eq0rdvALT

Description: Alternate proof of eq0rdv . Shorter, but requiring df-clel , ax-8 . (Contributed by NM, 11-Jul-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis eq0rdvALT.1
|- ( ph -> -. x e. A )
Assertion eq0rdvALT
|- ( ph -> A = (/) )

Proof

Step Hyp Ref Expression
1 eq0rdvALT.1
 |-  ( ph -> -. x e. A )
2 1 pm2.21d
 |-  ( ph -> ( x e. A -> x e. (/) ) )
3 2 ssrdv
 |-  ( ph -> A C_ (/) )
4 ss0
 |-  ( A C_ (/) -> A = (/) )
5 3 4 syl
 |-  ( ph -> A = (/) )