Description: Alternate proof of eq0rdv . Shorter, but requiring df-clel , ax-8 . (Contributed by NM, 11-Jul-2014) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eq0rdvALT.1 | |- ( ph -> -. x e. A ) |
|
Assertion | eq0rdvALT | |- ( ph -> A = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0rdvALT.1 | |- ( ph -> -. x e. A ) |
|
2 | 1 | pm2.21d | |- ( ph -> ( x e. A -> x e. (/) ) ) |
3 | 2 | ssrdv | |- ( ph -> A C_ (/) ) |
4 | ss0 | |- ( A C_ (/) -> A = (/) ) |
|
5 | 3 4 | syl | |- ( ph -> A = (/) ) |