Description: One direction of eqabb is provable from fewer axioms. (Contributed by Wolf Lammen, 13-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqab | |- ( A. x ( x e. A <-> ph ) -> A = { x | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid1 | |- A = { x | x e. A } |
|
| 2 | abbi | |- ( A. x ( x e. A <-> ph ) -> { x | x e. A } = { x | ph } ) |
|
| 3 | 1 2 | eqtrid | |- ( A. x ( x e. A <-> ph ) -> A = { x | ph } ) |