Description: One direction of eqabb is provable from fewer axioms. (Contributed by Wolf Lammen, 13-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | eqab | |- ( A. x ( x e. A <-> ph ) -> A = { x | ph } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid1 | |- A = { x | x e. A } |
|
2 | abbi | |- ( A. x ( x e. A <-> ph ) -> { x | x e. A } = { x | ph } ) |
|
3 | 1 2 | eqtrid | |- ( A. x ( x e. A <-> ph ) -> A = { x | ph } ) |