Description: Obsolete version of eqabb as of 12-Feb-2025. (Contributed by NM, 26-May-1993) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqabbOLD | |- ( A = { x | ph } <-> A. x ( x e. A <-> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 | |- ( y e. A -> A. x y e. A ) |
|
| 2 | hbab1 | |- ( y e. { x | ph } -> A. x y e. { x | ph } ) |
|
| 3 | 1 2 | cleqh | |- ( A = { x | ph } <-> A. x ( x e. A <-> x e. { x | ph } ) ) |
| 4 | abid | |- ( x e. { x | ph } <-> ph ) |
|
| 5 | 4 | bibi2i | |- ( ( x e. A <-> x e. { x | ph } ) <-> ( x e. A <-> ph ) ) |
| 6 | 5 | albii | |- ( A. x ( x e. A <-> x e. { x | ph } ) <-> A. x ( x e. A <-> ph ) ) |
| 7 | 3 6 | bitri | |- ( A = { x | ph } <-> A. x ( x e. A <-> ph ) ) |