Description: Version of eqabb using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabbw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | eqabbw | |- ( A = { x | ph } <-> A. y ( y e. A <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabbw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | dfcleq | |- ( A = { x | ph } <-> A. y ( y e. A <-> y e. { x | ph } ) ) |
|
| 3 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 4 | 1 | sbievw | |- ( [ y / x ] ph <-> ps ) |
| 5 | 3 4 | bitri | |- ( y e. { x | ph } <-> ps ) |
| 6 | 5 | bibi2i | |- ( ( y e. A <-> y e. { x | ph } ) <-> ( y e. A <-> ps ) ) |
| 7 | 6 | albii | |- ( A. y ( y e. A <-> y e. { x | ph } ) <-> A. y ( y e. A <-> ps ) ) |
| 8 | 2 7 | bitri | |- ( A = { x | ph } <-> A. y ( y e. A <-> ps ) ) |