Description: Equality of a class variable and a class abstraction. Commuted form of eqabb . (Contributed by NM, 20-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqabcb | |- ( { x | ph } = A <-> A. x ( ph <-> x e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabb | |- ( A = { x | ph } <-> A. x ( x e. A <-> ph ) ) |
|
| 2 | eqcom | |- ( { x | ph } = A <-> A = { x | ph } ) |
|
| 3 | bicom | |- ( ( ph <-> x e. A ) <-> ( x e. A <-> ph ) ) |
|
| 4 | 3 | albii | |- ( A. x ( ph <-> x e. A ) <-> A. x ( x e. A <-> ph ) ) |
| 5 | 1 2 4 | 3bitr4i | |- ( { x | ph } = A <-> A. x ( ph <-> x e. A ) ) |